Given:

the matching procedure assumes searching for thee specific set of model parameters  to minimize the goal function:

F({\bf p}) = \sum_{k=1}^N \, \Psi \left( q^*(t_k) - q_k \right) \rightarrow \textrm{min}

where  is the discrepancy distance function.

Most popular choices are  and .


There are few approaches to match the Arps decline to the historical data:



Unconstrained matching


All three model parameters  are being varied to achieve the best fit to the training dataset.


Exponential Production DeclineHyperbolic Production DeclineHarmonic Production Decline


q(t)=q^*_0 \exp \left( -D_0 \, t \right)
q(t) = \frac{q^*_0}{ \left( 1+b \cdot D_0 \cdot t \right)^{1/b} }
q(t)=\frac{q^*_0}{1+D_0 \, t} 


The best-fit model may not match: 


Match the value of the initial rate 

The value of the model rate at the initial time moment is set to training dataset:  and the two other model properties  are being varied to achieve the best fit to the training dataset.

Exponential Production DeclineHyperbolic Production DeclineHarmonic Production Decline


q(t)=q_0 \exp \left( -D_0 \, t \right)
q(t) = \frac{q_0}{ \left( 1+b \cdot D_0 \cdot t \right)^{1/b} }
q(t)=\frac{q_0}{1+D_0 \, t} 


The best-fit model may not match: 


Match the value of the current rate 


To ensure the smooth transition from historical data  to the production forecasts in future time moments one may wish to constrain the model by firm matching the production at the last historical moment  which leads to the following form of Arp's model:

Exponential Production DeclineHyperbolic Production DeclineHarmonic Production Decline


q(t)=q_N \cdot \exp \big[ -D_0 \cdot (t-t_N) \big]
q(t) = q_N \cdot \left[ \frac{1+b \cdot D_0 \cdot t_N }
{ 1+b \cdot D_0 \cdot t  } \right]^{1/b}
q(t) =  q_N \cdot  \left[ \frac{1+D_0 \cdot t_N }
{ 1+ D_0 \cdot t  } \right]
Q(t) - Q_N = [ q_N - q(t)] \, \tau_0
Q(t) - Q_N = \frac{q_N^b \, (\tau_0 + b \, t_N)}{1-b} \left[ q_N^{1-b} - q^{1-b}(t) \right]
Q(t) - Q_N = q_N \, (\tau_0 + t_N) \cdot \ln \frac{q_N}{q(t)}


The best-fit model may not match: 

Match the value of the current cumulative 

To ensure the smooth transition from historical data  to the production forecasts in future time moments one may wish to constrain the model by firm matching the production at the last historical moment  which leads to the following form of Arp's model:

Exponential Production DeclineHyperbolic Production DeclineHarmonic Production Decline


q(t)=q_N \cdot \exp \big[ -D_0 \cdot (t-t_N) \big]
q(t) = q_N \cdot \left[ \frac{1+b \cdot D_0 \cdot t_N }
{ 1+b \cdot D_0 \cdot t  } \right]^{1/b}
q(t) =  q_N \cdot  \left[ \frac{1+D_0 \cdot t_N }
{ 1+ D_0 \cdot t  } \right]
Q(t) - Q_N = [ q_N - q(t)] \, \tau_0
Q(t) - Q_N = \frac{q_N^b \, (\tau_0 + b \, t_N)}{1-b} \left[ q_N^{1-b} - q^{1-b}(t) \right]
Q(t) - Q_N = q_N \, (\tau_0 + t_N) \cdot \ln \frac{q_N}{q(t)}


The best-fit model may not match: 

Match the value of the current rate and cumulative 


To ensure the smooth transition from historical data  to the production forecasts in future time moments one may wish to constrain the model by firm matching the production at the last historical moment  which leads to the following form of Arp's model:

Exponential Production DeclineHyperbolic Production DeclineHarmonic Production Decline


q(t)=q_N \cdot \exp \big[ -D_0 \cdot (t-t_N) \big]
q(t) = q_N \cdot \left[ \frac{1+b \cdot D_0 \cdot t_N }
{ 1+b \cdot D_0 \cdot t  } \right]^{1/b}
q(t) =  q_N \cdot  \left[ \frac{1+D_0 \cdot t_N }
{ 1+ D_0 \cdot t  } \right]
Q(t) - Q_N = [ q_N - q(t)] \, \tau_0
Q(t) - Q_N = \frac{q_N^b \, (\tau_0 + b \, t_N)}{1-b} \left[ q_N^{1-b} - q^{1-b}(t) \right]
Q(t) - Q_N = q_N \, (\tau_0 + t_N) \cdot \ln \frac{q_N}{q(t)}


The best-fit model may not match: 


See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Decline Curve Analysis / DCA Arps @model