Given:

the matching procedure assumes minimizing the goal function:

F({\bf p}) = \sum_{k=1}^N \, \Psi(q^*(t_k) - q_k) \rightarrow \textrm(min)

where  is the discrepancy distance function.

Most popular choices are  and .


There are few approaches to match the Arps decline to the historical data:


To ensure the smooth transition from historical data  to the production forecasts in future time moments one may wish to constrain the model by firm matching the production at the last historical moment  which leads to the following form of Arp's model:

Exponential Production DeclineHyperbolic Production DeclineHarmonic Production Decline


q(t)=q_N \cdot \exp \big[ -D_0 \cdot (t-t_N) \big]
q(t) = q_N \cdot \left[ \frac{1+b \cdot D_0 \cdot t_N }
{ 1+b \cdot D_0 \cdot t  } \right]^{1/b}
q(t) =  q_N \cdot  \left[ \frac{1+D_0 \cdot t_N }
{ 1+ D_0 \cdot t  } \right]
Q(t) - Q_N = [ q_N - q(t)] \, \tau_0
Q(t) - Q_N = \frac{q_N^b \, (\tau_0 + b \, t_N)}{1-b} \left[ q_N^{1-b} - q^{1-b}(t) \right]
Q(t) - Q_N = q_N \, (\tau_0 + t_N) \cdot \ln \frac{q_N}{q(t)}


See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Decline Curve Analysis / DCA Arps @model