Given:

the matching procedure assumes searching for thee specific set of model parameters  to minimize the goal function:

G({\bf p}) = \sum_{k=1}^N \, \Psi \left( q^*(t_k) - q_k \right) \rightarrow \textrm{min}

where  is the discrepancy distance function.

Most popular choices are  and .


There are few approaches to match the Arps decline to the historical data (or a training dataset within):


The constrained matching is used to one may wish to ensure the smooth transition from the training dataset to future model predictions.

Unconstrained matching



All three model parameters  are being varied to achieve the best fit to the training dataset.

Exponential Production DeclineHyperbolic Production DeclineHarmonic Production Decline


q(t)=q^*_0 \exp \left( -  t/\tau_0 \right)
q(t) = \frac{q^*_0}{ \left( 1+b \cdot  t/\tau_0 \right)^{1/b} }
q(t)=\frac{q^*_0}{1+t/\tau_0} 


The best-fit model may not match: 

Match the value of the initial rate 



The value of the model rate at the initial time moment is set to training dataset and the two other model properties  
are being varied to achieve the best fit to the training dataset.

Exponential Production DeclineHyperbolic Production DeclineHarmonic Production Decline


q(t)=q_0 \exp \left( -t/\tau_0 \right)
q(t) = \frac{q_0}{ \left( 1+b \cdot t/\tau_0 \right)^{1/b} }
q(t)=\frac{q_0}{1+t/\tau_0} 


The best-fit model may not match: 

Match the value of the current rate 



The value of the model rate at the current time moment is set to training dataset:  and the two other model properties  are being varied to achieve the best fit to the training dataset.


Exponential Production DeclineHyperbolic Production DeclineHarmonic Production Decline


q(t)=q_N \cdot \exp \big[ -(t-t_N)/\tau_0 \big]
q(t) = q_N \cdot \left[ \frac{1+b \cdot t_N/\tau_0 }
{ 1+b \cdot t/\tau_0  } \right]^{1/b}
q(t) =  q_N \cdot  \left[ \frac{1+t_N/\tau_0 }
{ 1+ t/\tau_0  } \right]



This ensures the smooth transition from historical data
 to the production forecasts in future time moments .

The best-fit model may not match: 

Match the value of the current cumulative 



The value of the model rate at the initial time moment is set to achieve the match between the values of current cumulative from model prediction and training dataset  :

Exponential Production DeclineHyperbolic Production DeclineHarmonic Production Decline


q(t) = \frac{Q_N/\tau_0}{1-\exp(-t_N/\tau_0)}  \cdot \exp(-t/\tau_0) 
q(t) = \frac{(1-b) \cdot Q_N/\tau_0}{ 1 - \left( 1 + b \, t_N/\tau_0 \right) ^{-b/(1-b)}} \cdot \frac{1}{\left(1 + b\, t/\tau_0 \right)^{1/b}}
q(t)=\frac{Q_N/\tau_0}{\ln (1+ t_N/\tau_0)} \cdot \frac{1}{1+t/\tau_0}


The best-fit model may not match: 

Match the value of the current rate and cumulative 



The value of the model rate at the current time moment and decline pace are set to match both current rate 
 and current cumulative .

This makes Exponential Production Decline and Harmonic Production Decline are fully set while Hyperbolic Production Decline has opportunity to vary one model parameter to achieve the best fit to the training dataset.

Exponential Production DeclineHyperbolic Production DeclineHarmonic Production Decline


q(t) = \frac{Q_N/\tau_0}{1-\exp(-t_N/\tau_0)}  \cdot \exp(-t/\tau_0) 
q(t) = \frac{(1-b) \cdot Q_N/\tau_0}{ 1 - \left( 1 + b \, t_N/\tau_0 \right) ^{-b/(1-b)}} \cdot \frac{1}{\left(1 + b\, t/\tau_0 \right)^{1/b}}
q(t)=\frac{Q_N/\tau_0}{\ln (1+ t_N/\tau_0)} \cdot \frac{1}{1+t/\tau_0}


The best-fit model may not match: 


See Also


Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Decline Curve Analysis / DCA Arps @model