Page tree

@wikipedia


Synonym
: Heat Capacity Ratio (γ)Adiabatic Index (γ) = Isentropic expansion factor (κ) = Isentropic exponent (κ)


Ratio between Isobaric heat capacity  
C_P and Isochoric heat capacity  C_V:

(1) \gamma = \frac{C_P}{C_V}

Since  (1) is the ratio it can be equivalently represented by intensive properties:


(2) \gamma = \frac{c_P}{c_V} = \frac{c_{Pm}}{c_{Vm}}= \frac{c_{Pv}}{c_{Vv}}

where

c_P

c_{Pm}

Isobaric specific heat capacity

c_{Pv}

Isobaric volumetric heat capacity

c_V

Isochoric molar heat capacity

c_{Vm}

Isochoric specific heat capacity

c_{Vv}

Isochoric volumetric heat capacity


The Heat Capacity Ratio can be equivalently represented as ratio of Isothermal Compressibility  \beta_T and Isentropic Compressibility  \beta_S:

(3) \gamma=\frac{c_P}{c_V}=\frac{\beta_T}{\beta_S}= \kappa

wich is often denoted as  \kappa and referred as Isentropic exponent.


The Heat Capacity Ratio for ideal gases is:

(4) \gamma = 1 + \frac{2}{f}

where

f

number of molecular freedom degrees


Heat capacity ratio for various fluids [1]

TempFluidγ
TempFluidγ
TempFluidγ
−181 °CH21.597200 °CDry air1.39820 °CNO1.400
−76 °C1.453400 °C1.39320 °CN2O1.310
20 °C1.4101000 °C1.365−181 °CN21.470
100 °C1.40415 °C1.404
400 °C1.3870 °CCO21.31020 °CCl21.340
1000 °C1.35820 °C1.300−115 °CCH41.410
2000 °C1.318100 °C1.281−74 °C1.350
20 °CHe1.660400 °C1.23520 °C1.320
20 °CH2O1.3301000 °C1.19515 °CNH31.310
100 °C1.32420 °CCO1.40019 °CNe1.640
200 °C1.310−181 °CO21.45019 °CXe1.660
−180 °CAr1.760−76 °C1.41519 °CKr1.680
20 °C1.67020 °C1.40015 °CSO21.290
0 °CDry air1.403100 °C1.399360 °CHg1.670
20 °C1.400200 °C1.39715 °CC2H61.220
100 °C1.401400 °C1.39416 °CC3H81.130


In express analysis of
petroleum fluids (including liquid water and vapour) the Heat Capacity Ratio can be assumed  \gamma \sim 1.3.

See also


Physics / Thermodynamics / Thermodynamic process 

Mayer's relation ]

References


White, Frank M. (October 1998). Fluid Mechanics (4th ed.). New York: McGraw HillISBN 978-0-07-228192-7.


  • No labels