Page tree

@wikipedia


One of the cubic equations of real gas state defining the Compressibility factor  Z(p, T) as a function of fluid pressure  p and fluid temperature  T:

(1) Z^3 - (1-B) \, Z^2 +(A-2B-3B^2) \, Z -(AB-B^2-B^3) = 0
(2) A= 0.45724 \cdot \alpha \cdot \frac{p_r}{T_r^2}
(3) B=0.07780 \cdot \frac{p_r}{T_r}
(4) \alpha = \left( 1 + \kappa \, (1-T_r^{0.5}) \right)^2
(5) \kappa = \kappa_0 + \left[ \kappa_1 + \kappa_2 (\kappa_3 - T_r) (1-T_r^{0.5}) \right]\, (1+T_r^{0.5}) \, (0.7 - T_r)

(6) \kappa_0 = 0.378893 + 1.4897153 \, \omega -0.17131848 \, \omega^2 +0.0196554 \, \omega^3

where

Z

Compressibility factor

p_c

p

Fluid pressure

T_c

Сritical temperature

T

Fluid temperature

p_r = p/p_c

Reduced pressure

R

Gas constant

T_r = T/T_c

Reduced temperature

\omega

Acentric factor

\{ \kappa_1, \, \kappa_2, \, \kappa_3 \}

fitting parameters



Once compressibility Z-factor Z(p, T) is known the fluid density  \rho can be calculated as:

(7) \rho(p, T) = \frac{1}{Z(p,T)} \cdot \frac{M}{R} \cdot \frac{p}{T}

where

M

fluid molar mass

See also


Natural Science / Physics / Thermodynamics / Equation of State / Real Gas EOS @model

Real Gas ]







  • No labels