Page tree
Skip to end of metadata
Go to start of metadata

@wikipedia


One of the cubic equations of real gas state defining the Compressibility factor Z(p, T) as a function of fluid pressure p and fluid temperature T:

(1) Z^3 - (1-B) \, Z^2 +(A-2B-3B^2) \, Z -(AB-B^2-B^3) = 0
(2) A= 0.45724 \cdot \alpha \cdot \frac{p_r}{T_r^2}
(3) B=0.07780 \cdot \frac{p_r}{T_r}
(4) \alpha = \left( 1 + \kappa \, (1-T_r^{0.5}) \right)^2
(5) \kappa = 0.37464 + 1.54226 \, \omega -0.26992 \, \omega^2

where

Z

Compressibility factor

p_c

p

Fluid pressure

T_c

Сritical temperature

T

Fluid temperature

p_r = p/p_c

Reduced pressure

R

Gas constant

T_r = T/T_c

Reduced Temperature

\omega

Acentric factor





Once compressibility Z-factor Z(p, T) is known the fluid density \rho can be calculated as:

(6) \rho(p, T) = \frac{1}{Z(p,T)} \cdot \frac{M}{R} \cdot \frac{p}{T}

where

M

fluid molar mass

See also


Natural Science / Physics / Thermodynamics / Equation of State / Real Gas EOS @model

Real Gas ]

Reference


  1. Ding-Yu Peng and Donald B. Robinson, A New Two-Constant Equation of State, Industrial & Engineering Chemistry Fundamentals , 1976, 15 (1), 59-64, doi.org/10.1021/i160057a011






  • No labels