Page tree

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 12 Next »


@wikipedia


Dimensionless quantity characterising the development of Natural Thermal Convection:

(1) \mbox{Ra}_L = \mbox{Gr} \cdot \mbox{Pr} = \frac{g \, \beta \, \Delta T \, L^3}{\nu \cdot a}

where

\Delta T

Temperature gradient across Natural Thermal Convection

\nu

Kinematic viscosity of the fluid

\beta

Thermal expansion coefficient of the fluid

a

Thermal Diffusivity of the fluid

L

Characteristic length of Natural Thermal Convection

g

Standard gravity constant

\displaystyle {\rm Pr} = \frac{\nu}{a}

Prandtl number

\displaystyle {\rm Gr} = \frac{g \, \beta \, \Delta T \, L^3}{\nu^2}

Grashof number \displaystyle {\rm Pr} \frac{\nu}{a}


For the Natural Thermal Convection in the annulus between two concentric pipes:

(2) \mbox{Ra}_D = \frac{8}{(D_o - D_i)^3} \cdot \frac{ \left[ \ln D_o/D_i \right]^4 }{D_i^{-3/5}+D_o^{-3/5}} \cdot \mbox{Ra}_L = \frac{ \left[ \ln D_o/D_i \right]^4 }{D_i^{-3/5}+D_o^{-3/5}} \cdot \frac{g \, \beta \, \Delta T }{\nu \cdot a}

where

D_o

outer pipe

D_i

inner pipe

L = 0.5 \cdot ( D_o - D_i)

annulus gap

See also


Physics / Thermodynamics / Heat Transfer

Dimensionless Heat Transfer Numbers ]


  • No labels