Page tree

Dimensionless transient water flux response from aquifer to unit step change in net pay pressure:


(1) W_{eD}(t, r_{aD}) = \int_0^{t} \frac{\partial p_1( t_D, r_D)}{\partial r_D} \Bigg|_{r_D=1} dt_D

where

p_1(t_D, r_D)

solution of unit-pressure radial composite reservoir transient flow (2)(5)


(2) \frac{\partial p_1}{\partial t_D} = \frac{\partial^2 p_1}{\partial r_D^2} + \frac{1}{r_D}\cdot \frac{\partial p_1}{\partial r_D}
(3) p_1(t_D = 0, r_D)= 0
(4) p_1(t_D, r_D=1) = 1

(5) \frac{\partial p_1(t_D, r_D)}{\partial r_D} \Bigg|_{r_D=r_{aD}} = 0

or

(6) p_1(t_D, r_D = \infty) = 0


The Dimensionless Water Influx  W_{eD}(t) is a unique function of time  t for each dimensionless value of  r_{aD} which represents the ratio of external aquifer size  r_a to net pay size r_e:

(7) r_{aD} = \frac{r_a}{r_e}


This function is readily tabulated for a wide range of  r_{aD} variations.

There are also polynomial approximations.


See Also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling 

Depletion ]   [ Aquifer ] [ Aquifer Drive @model ] [ van Everdingen-Hurst (VEH) Aquifer Drive @model ]

  • No labels