Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

LaTeX Math Inline
bodyT_0

Intake temperature 

LaTeX Math Inline
bodyT(l)

Along-pipe temperature profile 

LaTeX Math Inline
bodyp_0

Intake pressure 

LaTeX Math Inline
body\rho(T, p)

LaTeX Math Inline
bodyq_0

Intake flowrate 

LaTeX Math Inline
body\mu(T, p)

LaTeX Math Inline
bodyz(l)

Pipeline trajectory TVDss

LaTeX Math Inline
bodyA

Pipe cross-section area  

LaTeX Math Inline
body\theta(l)

Pipeline trajectory inclination, 

LaTeX Math Inline
body--uriencoded--\displaystyle \cos \theta (l) = \frac%7Bdz%7D%7Bdl%7D = \rm const

LaTeX Math Inline
body\epsilon

Inner pipe wall roughness

Assumptions

...

Stationary flowHomogenous
Steady-State flow
Isothermal or
Quasi-isothermal
conditions
 flow

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial t%7D = 0

LaTeX Math Inline
body--uriencoded--\displaystyle \frac%7B\partial T%7D%7B\partial t%7D =0 \rightarrow T(t,l) = T(l)

Homogenous flow

Constant cross-section pipe area

LaTeX Math Inline
bodyA
along hole

LaTeX Math Inline
body

p(r

--uriencoded--\displaystyle \frac%7B\partial p%7D%7B\partial \tau_x%7D =\frac%7B\partial p%7D%7B\partial \tau_y%7D =0 \rightarrow p(t, \tau_x,\tau_y,l) = p(l)

LaTeX Math Inline
body

T

A(

t

l) =

T

A = \rm const

Constant inclination

LaTeX Math Inline
body

A

--uriencoded--\displaystyle \theta(l)

= A = \rm const

= \theta = %7B\rm const%7D \rightarrow \cos \theta = \frac%7Bdz%7D%7Bdl%7D = %7B\rm const%7D



Equations

...

Pressure profile along the pipe


LaTeX Math Block
anchorPressureProfile
alignmentleft
L = L(p) = \int_{p_0}^{p} \frac{ \rho(p) - j_m^2 \, c(p) }{G \, \rho^2(p) - F(\rho(p))} \, dp



...

Density form


LaTeX Math Block
anchorPressureProfile
alignmentleft
L = L(\rho) =\int_{\rho_0}^{\rho} \frac{ 1/c(\rho) - j_m^2/\rho  }{G \, \rho^2 - F(\rho)} \, d\rho


Pressure-Density form


LaTeX Math Block
anchorPressureProfile
alignmentleft
L = \int_{p_0}^{p} \frac{ \rho \, dp}{G \, \rho^2 - F(\rho)} 
- j_m^2 \cdot \int_{\rho_0}^{\rho} \frac{1}{\rho} \, \frac{d \rho}{G \, \rho^2 - F(\rho)}

This form is useful for derivation of Pressure Profile in GF-Proxy Pipe Flow @model and  


Approximations

...


See also