Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


In linear formation approхimation the pressure response to the varying rates in the offset wells is subject to convolution equation:


LaTeX Math Block
alignmentleft
p_n(t) = p_{i,n} + \sum_{k = 1}^N  \sum_{\alpha = 1}^{N_k} \big( q^{(\alpha)}_k - q^{(\alpha-1)}_k \big) \ p^u_{nk}(t - t_{\alpha k})

where




1

LaTeX Math Inline
bodyp_n(t)

pressure at

LaTeX Math Inline
bodyn
-th well at arbitrary moment of time
LaTeX Math Inline
bodyt

2

LaTeX Math Inline
bodyp_{i,n}

initial pressure at

LaTeX Math Inline
bodyn
-the well

3

LaTeX Math Inline
bodyq^{(\alpha)}_n

rate value of

LaTeX Math Inline
body\alpha
-th transient at
LaTeX Math Inline
bodyn
-th well

4

LaTeX Math Inline
bodyp^u_{nk} (t)

pressure transient response in

LaTeX Math Inline
bodyn
-th wel to unit-rate production from
LaTeX Math Inline
bodyk
-th well

5

LaTeX Math Inline
bodyt_{\alpha k}

starting point of the

LaTeX Math Inline
body\alpha
-th transient in
LaTeX Math Inline
bodyk
-th well

6

LaTeX Math Inline
bodyN

number of wells in the test
7

LaTeX Math Inline
bodyN_k

number of transients in

LaTeX Math Inline
bodyk
-th well

with assumption:

  • LaTeX Math Inline
    bodyq^{(-1)}_k = 0
     – for any well 
    LaTeX Math Inline
    bodyk = 1.. \ N


  • LaTeX Math Inline
    bodyp^u_{nk}(\tau) = 0
     at 
    LaTeX Math Inline
    body\tau < 0
     for any pair of wells 
    LaTeX Math Inline
    bodyn, k = 1.. \ N


Hence, convolution is using initial formation pressure 

LaTeX Math Inline
bodyp_{i, n}
, unit-rate transient responses of  wells and cross-well intervals 
LaTeX Math Inline
bodyp^u_{nk} (t)
 and rate histories 
LaTeX Math Inline
body \{ q_k (t) \}_{k = 1 .. N}
 to calculate pressure bottom-hole pressure response as function time 
LaTeX Math Inline
bodyp_n(t)
:

LaTeX Math Block
anchor1
alignmentleft
\big\{ p_{i, n}, \{ p^u_{nk} (t),   q_k (t)   \}_{k = 1 .. N} \big\} \rightarrow  p_n(t)



The 

Hint
0MDCV
1Multiwell Deconvolution
is a reverse problem to convolution and search for 
LaTeX Math Inline
bodyN^2
 functions 
LaTeX Math Inline
bodyp^u_{nk} (t)
  and 
LaTeX Math Inline
bodyN
 numbers 
LaTeX Math Inline
bodyp_{i, n}
  using the historical pressure and rate records 
LaTeX Math Inline
body\{ p_k(t), \ \{ q^{(\alpha)}_k \}_{\alpha = 1.. N_k} \}_{k = 1 .. N}
 and provides the adjustment to the rate histories for the small mistakes 
LaTeX Math Inline
body \{ q_k \}_{\alpha = 1.. N_k} \rightarrow \{ \tilde q_k \}_{\alpha = 1.. N_k}
:

LaTeX Math Block
anchor1
alignmentleft
\big\{ p_k(t), q_k (t) \big\} _{k = 1 .. N}   \rightarrow  \big\{  p_{i, n}, \{ p^u_{nk} (t),  \tilde  q_k (t)   \}_{k = 1 .. N}  \big\} 


The solution of deconvolution problem is based on the minimization of the objective function:

LaTeX Math Block
anchorM2BPX
alignmentleft
E(\{ p_{i,n}, p^u_{nk}(\tau), q^{(\alpha)}_n \}_{n=1..N}) \rightarrow {\rm min}

where

LaTeX Math Block
anchor1
alignmentleft
E(\{ p_{i,n}, p^u_{nk}(\tau), q^{(\alpha)}_n \}_{n=1..N}) = \sum_{n=1}^N \Big(p_{i,n} + \sum_{k = 1}^N  \sum_{\alpha = 1}^{N_k} (q^{(\alpha)}_k - q^{(\alpha-1)}_k ) \ p^u_{nk}(t - t_{\alpha k})- p_n(t) \Big)^2 
+ w_c \, \sum_{n = 1}^N \sum_{k = 1}^{N_k} {\rm Curv} \big( p^u_{nk}(\tau) \big) + 
w_q \, \sum_{k = 1}^N  \sum_{\alpha = 1}^{N_k} \big( q^{(\alpha)}_k - \tilde q^{(\alpha)}_k \big)^2 

and objective function components have the following meaning:



LaTeX Math Inline
body\sum_{n=1}^N \Big(p_{i,n} + \sum_{k = 1}^N \sum_{\alpha = 1}^{N_k} (q^{(\alpha)}_k - q^{(\alpha-1)}_k ) \ p^u_{nk}(t - t_{\alpha k})- p_n(t) \Big)^2

is responsible for minimizing discrepancy between model and historical pressure data

LaTeX Math Inline
bodyw_c \, \sum_{n = 1}^N \sum_{k = 1}^{N_k} {\rm Curv} \big( p^u_{nk}(\tau) \big)

is responsible for minimizing the curvature of the transient response (which reflects the diffusion character of the pressure response to well flow)

LaTeX Math Inline
bodyw_q \, \sum_{k = 1}^N \sum_{\alpha = 1}^{N_k} \big( q^{(\alpha)}_k - \tilde q^{(\alpha)}_k \big)^2

is responsible for minimizing discrepancy between model and historical rate data (since historical rate records are not accurate at the time scale of pressure sampling)


In practice the above approach is not stable.

One of the efficeint regularizations has been suggested by Shroeter 


One of the most efficient method in minimizing the above objective function is the hybrid of genetic and quasinewton algorithms  in parallel on multicore workstation.

The 

Hint
0MDCV
1Multiwell Deconvolution
also adjusts the rate histories for each well 
LaTeX Math Inline
body\{ q^{(\alpha)}_k \}_{\alpha = 1.. N_k} \rightarrow \{ \tilde q^{(\alpha)}_k \}_{\alpha = 1.. N_k}
 to achieve the best macth of the bottom hole pressure readings.


The weight coefficients 

LaTeX Math Inline
bodyw_c
 and  
LaTeX Math Inline
bodyw_q
  control contributions from corresponding components and should be calibrated to the reference transients (manuualy or automatically).


The XDCV methodology constitute a big area of practical knowledge and not all the tricks and solutions are currenlty automated and require a practical skill. 


See also


Petroleum Industry / Upstream / Subsurface E&P Disciplines / Production Analysis (PA) / Pressure Deconvolution / Multiwell deconvolution (MDCV) / XDCV