Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Motivation


Subsurface Temperature Profile around Lateral Flow makes adjustments to Geothermal Temperature Profile 

LaTeX Math Inline
bodyT_G(z)
 to account for the lateral reservoir flow with a constant temperature (see Fig. 1 and Fig. 2).


Fig. 1. Sample Subsurface Temperature Profile around a 

LaTeX Math Inline
bodyh_f
 height lateral flow at depth 
LaTeX Math Inline
bodyz_f
with temperature 
LaTeX Math Inline
bodyT_f

Fig. 2. Sample Subsurface Temperature Profile around two lateral flows with temperature 

LaTeX Math Inline
body--uriencoded--T_%7Bf1%7D
 and 
LaTeX Math Inline
body--uriencoded--T_%7Bf2%7D


Outputs


LaTeX Math Inline
bodyT_e(t, z)

Subsurface temperature distribution


Inputs


LaTeX Math Inline
bodyt

Time lapse after the temperature step from 

LaTeX Math Inline
bodyT_e(z=0) =0
  up to 
LaTeX Math Inline
bodyT_e(z=0) =T_f

LaTeX Math Inline
bodyz

Spatial coordinate along the transversal direction to constant temperature 

LaTeX Math Inline
bodyT_e(z)= T_f
plane 
LaTeX Math Inline
bodyz=0

LaTeX Math Inline
bodyz_f

TVDss of the top of the lateral flow unit

LaTeX Math Inline
bodyh_f

True vertical thickness of the the lateral flow unit

LaTeX Math Inline
bodyT_f

Boundary temperature at 

LaTeX Math Inline
bodyz=0

LaTeX Math Inline
bodya_e

Thermal diffusivity of the surroundings

LaTeX Math Inline
bodyT_G(z)

Geothermal Temperature Profile


Equations


Driving equationInitial conditions Boundary conditions


LaTeX Math Block
anchor1
alignmentleft
\frac{\partial T_e}{\partial t} = a_e^2 \Delta T_e = a_e^2\frac{\partial^2 T_e}{\partial z^2}



LaTeX Math Block
anchor1
alignmentleft
T_e(t=0, z) = T_G(z)



LaTeX Math Block
anchor7685E
alignmentleft
T_e(t, z_f \leq z \leq z_f + h_f) = T_f = {\rm const}


LaTeX Math Block
anchor7685E
alignmentleft
T_e(t, z \rightarrow \infty) = T_G(z)



Solution



LaTeX Math Block
anchor1
alignmentleft
\mbox{if} \, z < z_f \; \Longrightarrow \;T_e(t,z) = T_f + (T_G(z) - T_f) \cdot \mbox{erf} \left( \frac{z_f-z}{\sqrt{4 a_e t}} \right)



LaTeX Math Block
anchor1
alignmentleft
\mbox{if} \, z_f \leq z \leq z_f + h_f  \; \Longrightarrow \; T_e(t,z) = T_f



LaTeX Math Block
anchor1
alignmentleft
\mbox{if} \, z > z_f + h_f  \; \Longrightarrow \; T_e(t,z) = T_f + (T_G(z) - T_f) \cdot \mbox{erf} \left( \frac{z-z_f-h_f}{\sqrt{4 a_e t}} \right)


where

LaTeX Math Inline
body--uriencoded--\mbox%7Berf%7D(x)

Error function


See Also


Geology / Geothermal Temperature Field / Geothermal Temperature Profile

Physics / Fluid Dynamics / Linear Fluid Flow 

Temperature Flat Source Solution @model ] [ Geothermal Temperature Profile @model ]

Reference


Show If
grouparax





Show If
groupeditors


Panel
bgColor#FFDFDD


Expand
titleEditor

Heat flow equation for Semispace Linear Conduction:

LaTeX Math Block
anchor1
alignmentleft
\frac{\partial T}{\partial t} = a^2 \Delta T = a^2\frac{\partial^2 T}{\partial z^2}

Initial Conditions

LaTeX Math Block
anchor1
alignmentleft
T(t=0, z) = T_G(z)

Boundary conditions

LaTeX Math Block
anchor7685E
alignmentleft
T(t, z=0) = T_f = {\rm const}, \quad T(t, z \rightarrow \infty) = T_G(z)


The exact solution is given by following formula:

LaTeX Math Block
anchor1
alignmentleft
T(t,z) = T_f + (T_G(z) - T_f) \cdot \frac{2}{\sqrt{\pi}} \int_0^{z/\sqrt{4at}} e^{-\xi^2} d\xi

A fair approximation at late times (

LaTeX Math Inline
body\zeta \sim 0
) is given by expanding the integral:

LaTeX Math Block
anchorSLC
alignmentleft
T(t,z) = T_f + (T_G(z) - T_f) \cdot \Bigg[  1- \frac{\exp(-\zeta^2)}{\sqrt{\pi} \zeta} \bigg( 1- \frac{1}{2 \zeta}  + \frac{3}{4 \zeta^3} \bigg) \Bigg]

where

LaTeX Math Block
anchor1
alignmentleft
\zeta = \frac{z}{4 a t}

The final solution for temperature  above the flowing unit is represented by RHK pipe flow solution where TG is replaced with Tb from 

LaTeX Math Block Reference
anchorSLC
.


For the intervals between two injection units the one needs to account for the SLC contribution from upper flowing unit and from lower flowing unit which can be done using the superposition.


First, let's rewrite 

LaTeX Math Block Reference
anchorSLC
 in terms of temperature gain:

LaTeX Math Block
anchor66NAU
alignmentleft
dT(t, z) = T(t,z) - T_G(z)= -  (T_G(z) - T_f) \cdot    \frac{\exp(-\zeta^2)}{\sqrt{\pi} \zeta} \bigg( 1- \frac{1}{2 \zeta}  + \frac{3}{4 \zeta^3} \bigg) 


Now one can write down the temperature disturbance from the overlying flowing unit A1:

LaTeX Math Block
anchor66NAU
alignmentleft
dT_{b,over}(t, z) = T_{b,up}(t,z) - T_G(z)= -  (T_G(z) - T_{f, A1}) \cdot    \frac{\exp(-\zeta^2)}{\sqrt{\pi} \zeta} \bigg( 1- \frac{1}{2 \zeta}  + \frac{3}{4 \zeta^3} \bigg) 
and from the underlying flowing unit A2:
LaTeX Math Block
anchor66NAU
alignmentleft
dT_{b,under}(t, z) = T_{b,up}(t,z) - T_G(z)= -  (T_G(z) - T_{f, A2}) \cdot    \frac{\exp(-\zeta^2)}{\sqrt{\pi} \zeta} \bigg( 1- \frac{1}{2 \zeta}  + \frac{3}{4 \zeta^3} \bigg) 


The background temperature disturbance between the flowing units will be:

LaTeX Math Block
anchor66NAU
alignmentleft
T_b(t, z) = T_G(z) + dT_{b,over}(t, z) + dT_{b,under}(t, z)


Replacing the static value of 

LaTeX Math Inline
bodyT_G(z)
 in RHK model with dynamic value of  
LaTeX Math Inline
bodyT_b(t, z)
 one arrives to the final wellbore temperature model with account of heat exchange with surrounding rocks and cooling effects from flowing units (Semispace Linear Conduction).