Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

@wikipedia


A ratio between compressible fluid volumetric flowrate and incompressible fluid volumetric flowrate through the ideal orifice:

LaTeX Math Block
anchorIG0TW
alignmentleft
\epsilon = \frac{q_{\rm compressible}}{q_{\rm incompressible}}

where

LaTeX Math Block
anchorq_ideal
alignmentleft
q_{\rm incompressible} =  \frac{\pi d^2}{4} \cdot \sqrt{\frac{2 \cdot \Delta p}{\rho \cdot (1-\beta^4)}}

and

LaTeX Math Inline
body\Delta p

pressure drop on the choke

LaTeX Math Inline
body\Delta p = p_{in} - p_{out}

LaTeX Math Inline
body\beta = \frac{d}{D}

orifice narrowing ratio

LaTeX Math Inline
bodyd

orifice diameter

LaTeX Math Inline
bodyD

pipe diameter 


For incompressible fluids (water and most types of oil) the expansion factor is 

LaTeX Math Inline
body\epsilon = 1
.

For compressible fluids (condensate, steam and gases) the expansion factor is 

LaTeX Math Inline
body\epsilon < 1
.


The most popular engineering correlation covering various tapping arrangements is given by ISO5167:

LaTeX Math Block
anchor\epsilon
alignmentleft
\epsilon = 1 - (0.41 + 0.35 \, \beta^4) \cdot \frac{\Delta p}{\kappa \cdot p_{out}}

where

LaTeX Math Inline
body\Delta p

pressure drop on the orifice

LaTeX Math Inline
bodyp_{out}

discharge pressure

LaTeX Math Inline
body\beta = \frac{d}{D}

orifice narrowing ratio

LaTeX Math Inline
body\kappa

Adiabatic Index (isentropic expansion factor)


See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation (PFS) / Pipeline Choke @model

Orifice Plate Discharge Coefficient ]

Pipeline Engineering / Pipeline / Choke