Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...


LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}= B \cdot \int_0^t W_{eD}(t - \tau) \dot p d\tau



LaTeX Math Block
anchor1
alignmentleft
q^{\downarrow}_{AQ}(t)= \frac{dQ^{\downarrow}_{AQ}}{dt}




LaTeX Math Block
anchorCT
alignmentleft
W_{eD}(t)= \int_0^{t} \frac{\partial p_1}{\partial r_D} \bigg|_{r_D = 1} dt_D 







LaTeX Math Block
anchorRC1
alignmentleft
\frac{\partial p_1}{\partial t_D} =  \frac{\partial^2 p_1}{\partial r_D^2} + \frac{1}{r_D}\cdot \frac{\partial p_1}{\partial r_D}



LaTeX Math Block
anchorCT
alignmentleft
p_1(t_D = 0, r_D)= 0



LaTeX Math Block
anchorCT
alignmentleft
p_1(t_D, r_D=1) = 1




LaTeX Math Block
anchor1
alignmentleft
\frac{\partial p_1}{\partial r_D} 
\bigg|_{(t_D, r_D=r_a/r_e)} = 0



Expand
titleDerivation


Panel
bgColorpapaywhip


Expand
titleDerivation

Transient flow in Radial Composite Reservoir:


LaTeX Math Block
anchorRC
alignmentleft
\frac{\partial p_a}{\partial t} = \chi \cdot \left[ \frac{\partial^2 p_a}{\partial r^2} + \frac{1}{r}\cdot \frac{\partial p_a}{\partial r} \right]



LaTeX Math Block
anchor1
alignmentleft
p_a(t = 0, r)= p(0)



LaTeX Math Block
anchor1
alignmentleft
p_a(t, r=r_e) = p(t)



LaTeX Math Block
anchorp1_PSS
alignmentleft
\frac{\partial p_a}{\partial r} 
\bigg|_{(t, r=r_a)} = 0



Consider a pressure convolution:


LaTeX Math Block
anchorVEHP
alignmentleft
p_a(t, r) = p(0) + \int_0^t p_1 \left(\frac{(t-\tau) \cdot \chi}{r_e^2}, \frac{r}{r_e} \right) \dot p(\tau) d\tau



LaTeX Math Block
anchor1
alignmentleft
\dot p(\tau) = \frac{d p}{d \tau}



One can easily check that

LaTeX Math Block Reference
anchorVEHP
honors the whole set of equations
LaTeX Math Block Reference
anchorRC
LaTeX Math Block Reference
anchorp1_PSS
and as such defines a unique solution of the above problem.

Water flowrate at

LaTeX Math Inline
body\theta
sector interface with oil reservoir will be:

LaTeX Math Block
anchor1
alignmentleft
q^{\downarrow}_{AQ}(t)= \theta \cdot r_e \cdot h_a \cdot u(t,r_e)

where

LaTeX Math Inline
bodyu(t,r_e)
is flow velocity at aquifer contact boundary, which is:

LaTeX Math Block
anchor1
alignmentleft
u(t,r_e) = M_a \cdot \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}
 

where

LaTeX Math Inline
bodyM_a = \frac{k_a}{\mu_w}
is aquifer mobility.

Water flowrate becomes:

LaTeX Math Block
anchor1
alignmentleft
q^{\downarrow}_{AQ}(t)= C_a \cdot \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e}


Cumulative water flux:

LaTeX Math Block
anchor1
alignmentleft
Q^{\downarrow}_{AQ}(t) = \int_0^t q^{\downarrow}_{AQ}(t) dt = C_a \cdot \int_0^t \frac{\partial p_a(t,r)}{\partial r} \bigg|_{r=r_e} dt 






See Also

...

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Field Study & Modelling / Aquifer Drive / Aquifer Drive Models

...