Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Pipeline Flow Temperature Model is addressing this problem with account of the varying pipeline trajectory, pipeline schematic and heat transfer with the matter around pipeline.


Inputs & Outputs

...

InputsOutputs

pipeline trajectory

LaTeX Math Inline
body{\bf r} = {\bf r}(l) = \{ x(l), \, y(l), \, z(l) \}

along-pipe temperature

LaTeX Math Inline
bodyT(t, l)
distribution and evolution in time

pipeline cross-section area 

LaTeX Math Inline
bodyA(l)


fluid density

LaTeX Math Inline
body\rho(T, p)
and fluid viscosity 
LaTeX Math Inline
body\mu(T, p)


inflow temperature 

LaTeX Math Inline
bodyT_0(t)
, inflow pressure 
LaTeX Math Inline
bodyp_0
, inflow rate 
LaTeX Math Inline
bodyq_0


initial temperature  

LaTeX Math Inline
bodyT_g(l)
of the medium around the pipeline


specific heat capacity

LaTeX Math Inline
bodyc_p(l)
thermal conductivity 
LaTeX Math Inline
body\lambda_e(l)
  of the medium around pipeline


heat transfer coefficient 

LaTeX Math Inline
bodyU(l)
 based on pipeline schematic



Assumptions

...



Equations

...



LaTeX Math Block
anchorWIFEB
alignmentleft
\rho \, c \, \frac{\partial T}{\partial t} = \frac{d}{dl} \, \bigg( \lambda \, \frac{dT}{dl} \bigg)  - \rho \, c \, v \, \frac{dT}{dl}



LaTeX Math Block
anchorD11O7
alignmentleft
\rho_e \, c_e \, \frac{\partial T_e}{\partial t} = \nabla ( \lambda_e \nabla T_e)



LaTeX Math Block
anchorUSVI3
alignmentleft
T(t=0, l) = T_g(l)



LaTeX Math Block
anchorRVUHY
alignmentleft
T_e(t=0, l, r) = T_g(l)



LaTeX Math Block
anchorPSFGA
alignmentleft
T(t, l=0) = T_0(t)



LaTeX Math Block
anchor6QNDD
alignmentleft
T_e(t, l, r \rightarrow \infty) = T_g(l)



LaTeX Math Block
anchorU
alignmentleft
2 \pi \, \lambda_e \, r_w \, \frac{\partial T_e}{\partial r} \, \bigg|_{r=r_w} = 2 \pi \, r_f \, U \, \bigg( T_e \, \bigg|_{r=r_w} - T \bigg)



LaTeX Math Block
anchor9Y2Q9
alignmentleft
T_g(l) = T_{0e} + \int_{z_0}^{z(l)} G_T(z) dz = T_{0e} + \int_{l_0}^l G_T(z(l)) \cos \theta dl 




LaTeX Math Block
anchorG_T
alignmentleft
G_T(z(l)) = \frac{j_e}{\lambda_e(l)}


where



(see Derivation of Stationary Isothermal Homogenous Pipe Flow Pressure Profile @model )

...