Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Mathematical model of Capacitance Resistance Model (CRM)


Expand
titleContent


Column
width70%


Panel
bgColorAzure

Table of Contents
maxLevel2
indent10 px
stylecircle



Column
width30%



CRM – Single-Tank Capacitance Resistance Model


The

...

model equation is:

LaTeX Math Block
anchorCRMST
alignmentleft
q^{\uparrow}(t) =  f \, q^{\downarrow}(t)  - \tau \cdot \frac{ d q^{\uparrow}}{ dt }  - \beta \cdot \frac{d p_{wf}}{dt}

where

LaTeX Math Inline
bodyq^{\uparrow}(t)

total surface production

LaTeX Math Inline
bodyq^{\downarrow}(t)

total surface injection

LaTeX Math Inline
bodyp_{wf}(t)

average bottomhole pressure in producers

LaTeX Math Inline
bodyf

unitless constant, showing the share of injection which actually contributes to production

LaTeX Math Inline
body\tau

time-measure constant, related to well productivity [ s/Pa ]

LaTeX Math Inline
body\beta

storage-measure constant, related to reservoir volume and compressibility [ m3/Pa ]


The 

LaTeX Math Inline
body\tau
 and 
LaTeX Math Inline
body\beta
 constants are related to some primary well and reservoir characteristics:

LaTeX Math Block
anchorbeta
alignmentleft
\beta = c_t \, V_\phi


LaTeX Math Block
anchorIYYPU
alignmentleft
\tau = \frac{\beta}{J} = \frac{c_t  V_\phi}{J}

where

LaTeX Math Inline
bodyc_t

total formation-fluid compressibility

LaTeX Math Inline
bodyV_\phi = \phi \, V_R

drainable reservoir volume

LaTeX Math Inline
bodyV_R

total rock volume within the drainage area

LaTeX Math Inline
body\phi

average effective reservoir porosity

LaTeX Math Inline
bodyJ

total fluid productivity index


Total formation compressibility is a linear sum of reservoir/fluid components:

LaTeX Math Block
anchorc_t
alignmentleft
c_t = c_r +  s_w c_w + s_o  c_w + s_g c_g

where

LaTeX Math Inline
bodyc_r

rock compressibility

LaTeX Math Inline
bodyc_w, \, c_o, \, c_g

water, oil, gas compressibilities

LaTeX Math Inline
bodys_w, \, s_o, \, s_g

water, oil, gas formation saturations



Panel
bgColorPapayaWhip


Expand
titleDerivation

The first assumption of CRM is that productivity index of producers stays constant in time:

LaTeX Math Block
anchorJ
alignmentleft
J = \frac{q_{\uparrow}(t)}{p_r(t) - p_{wf}(t)} = \rm const

which can re-written as explicit formula for formation pressure:

LaTeX Math Block
anchorp_r
alignmentleft
p_r(t) = p_{wf}(t) + J^{-1} q_{\uparrow}(t)


The second assumption is that drainage volume of producers-injectors system is finite and constant in time:

LaTeX Math Block
anchor1
alignmentleft
V_\phi = V_{rocks} \phi = \rm const


The third assumption is that total formation-fluid compressibility stays constant in time:

LaTeX Math Block
anchor4XNCY
alignmentleft
c_t \equiv \frac{1}{V_{\phi}} \cdot \frac{dV_{\phi}}{dp} = \rm const

which can be easily integrated:

LaTeX Math Block
anchor4XNCY
alignmentleft
V_{\phi}(t) =V^\circ_{\phi} \cdot \exp \big[ - c_t \cdot  [p_i - p_r(t)] \big]

where

LaTeX Math Inline
bodyp_i
is field-average initial formation pressure,
LaTeX Math Inline
bodyV^\circ_{\phi}
is initial drainage volume,


LaTeX Math Inline
bodyp_r(t)
– field-average formation pressure at time moment
LaTeX Math Inline
bodyt
,

LaTeX Math Inline
bodyV_{\phi}(t)
is drainage volume at time moment
LaTeX Math Inline
bodyt
.


LaTeX Math Block
anchor4XNCY
alignmentleft
\frac{dV_{\phi}}{dp} = c_t \, V_{\phi} \ \cdot

The change in drainage volume

LaTeX Math Inline
bodydV_{\phi}
is leading to formation pressure variation


LaTeX Math Block
anchor4XNCY
alignmentleft
c_t \equiv \frac{1}{V_{\phi}} \cdot \frac{dV_{\phi}}{dp} = \frac{1}{V_{\phi}} \cdot \frac{1}{p_i - p_r(t) } \cdot \Bigg[ \int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau  \Bigg] = \rm const



The last equation can be rewritten as:

LaTeX Math Block
anchor4XNCY
alignmentleft
\int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau = c_t \, V_\phi \, [p_i - p_r(t)]

and differentiated

LaTeX Math Block
anchor4XNCY
alignmentleft
q_{\uparrow}(\tau)  = f q_{\downarrow}(\tau)  - c_t \, V_\phi \, \frac{d p_r(t)}{d t}

and substituting

LaTeX Math Inline
bodyp_r(t)
from productivity equation
LaTeX Math Block Reference
anchorp_r
:

LaTeX Math Block
anchor4XNCY
alignmentleft
q_{\uparrow}(\tau)  = f q_{\downarrow}(\tau)  - c_t \, V_\phi \, \bigg[ \frac{d p_{wf}(t)}{d t} + J^{-1} \frac{d q_{\uparrow}}{d t} \bigg]

which leads to

LaTeX Math Block Reference
anchorCRMST
.

...





The objective function

...

 is:

LaTeX Math Block
anchorM00IX
alignmentleft
E[\tau, \beta, f] = \sum_k \big[ q^{\uparrow}(t_k) - \tilde q^{\uparrow}(t_k) \big]^2   \rightarrow \min 


The constraints are:

LaTeX Math Block
anchor4SBJA
alignmentleft
\tau \geq  0 , \quad \beta \geq 0,  \quad  0 \leq f \leq 1

CRMP – Multi-tank Producer-based Capacitance Resistance Model


The model equation is:

LaTeX Math Block
anchorO2A2V
alignmentleft
q^{\uparrow}_j (t) = \sum_i^{n_i} f_{ij} q^{\downarrow}_i(t)  - \tau_j \cdot  \frac{ d q^{\uparrow}_j}{ dt }  - \beta_j  \cdot  \frac{d p_j}{dt}

...


The objective function is:

LaTeX Math Block
anchorPQYQ2
alignmentleft
E[\tau, \beta, f] = \sum_k \sum_j \big[ q^{\uparrow}_j(t_k) - \tilde q^{\uparrow}_j(t_k) \big]^2   \rightarrow \min 


The constraints are:

LaTeX Math Block
anchorW2JXJ
alignmentleft
\tau_j \geq  0 ,  \quad \beta_j \geq 0,  \quad f_{ij} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1

ICRM  – Multi-Tank Integrated Capacitance Resistance Model


The model equation is:

LaTeX Math Block
anchorLBWVO
alignmentleft
Q^{\uparrow}_j (t) = \sum_i^{n_i} f_{ij} Q^{\downarrow}_i(t)  - \tau_j \cdot \big[ q^{\uparrow}_j(t) - q^{\uparrow}_j(0) \big]  - \beta_j \cdot \big[ p_j(t) - p_j(0) \big]

...


The objective function is:

LaTeX Math Block
anchorFNDCZ
alignmentleft
E[\tau, \beta, f] =  \sum_k \sum_j \big[ Q^{\uparrow}_j(t_k) - \tilde Q^{\uparrow}_j(t_k) \big]^2   \rightarrow \min 


The constraints are:

LaTeX Math Block
anchorVBB0S
alignmentleft
\tau_j \geq  0 ,  \quad \beta_j \geq 0,  \quad f_{ij} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1


See Also

...

Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Capacitance Resistance Model (CRM)



References

...


Show If
grouparax

RAFAEL WANDERLEY DE HOLANDA, CAPACITANCE RESISTANCE MODEL IN A CONTROL SYSTEMS FRAMEWORK: A TOOL FOR DESCRIBING AND CONTROLLING WATERFLOODING RESERVOIRS, 2015.pdf


Anh Phuong Nguyen, CAPACITANCE RESISTANCE MODELING FOR PRIMARY RECOVERY, WATERFLOOD AND WATER-CO2 FLOOD, 2012.pdf