Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Panel
bgColorPapayaWhip
Expand
titleDerivation

The first assumption of CRM is that productivity index of producers stays constant in time:

LaTeX Math Block
anchorJ
alignmentleft
J = \frac{q_{\uparrow}(t)}{p_r(t) - p_{wf}(t)} = \rm const

which can be re-written as explicit formula for formation pressure:

LaTeX Math Block
anchorp_r
alignmentleft
p_r(t) = p_{wf}(t) + J^{-1} q_{\uparrow}(t)


The second assumption is that drainage volume of producers-injectors system is finite and constant in time:

LaTeX Math Block
anchor1
alignmentleft
V_\phi = V_r \phi = \rm const


The third assumption is that total formation-fluid compressibility stays constant in time:

LaTeX Math Block
anchorct
alignmentleft
c_t \equiv \frac{1}{V_{\phi}} \cdot \frac{dV_{\phi}}{dp} = \rm const

which can be easily integrated:

LaTeX Math Block
anchor4XNCY
alignmentleft
V_{\phi}(t) =V^\circ_{\phi} \cdot \exp \big[ - c_t \cdot  [p_i - p_r(t)] \big]

where

LaTeX Math Inline
bodyp_i
is field-average initial formation pressure,
LaTeX Math Inline
bodyV^\circ_{\phi}
is initial drainage volume,


LaTeX Math Inline
bodyp_r(t)
– field-average formation pressure at time moment
LaTeX Math Inline
bodyt
,

LaTeX Math Inline
bodyV_{\phi}(t)
is drainage volume at time moment
LaTeX Math Inline
bodyt
.


Equation

LaTeX Math Block Reference
anchorct
can be rewritten as:

LaTeX Math Block
anchordVphi
alignmentleft
dV_{\phi} = c_t \, V_{\phi} \, dp


The dynamic variations in drainage volume

LaTeX Math Inline
bodydV_{\phi}
are due to production/injection:

LaTeX Math Block
anchor4XNCY
alignmentleft
dV_{\phi}= \int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau

and leading to corresponding formation pressure variation:

LaTeX Math Block
anchor4XNCY
alignmentleft
dp = p_i - p_r(t)

thus making

LaTeX Math Block Reference
anchordVphi
become:

LaTeX Math Block
anchor4XNCY
alignmentleft
\int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau = c_t \, V_\phi \, [p_i - p_r(t)]

and differentiated

LaTeX Math Block
anchor4XNCY
alignmentleft
q_{\uparrow}(\tau)  = f q_{\downarrow}(\tau)  - c_t \, V_\phi \, \frac{d p_r(t)}{d t}

and substituting

LaTeX Math Inline
bodyp_r(t)
from productivity equation
LaTeX Math Block Reference
anchorp_r
:

LaTeX Math Block
anchor4XNCY
alignmentleft
q_{\uparrow}(\tau)  = f q_{\downarrow}(\tau)  - c_t \, V_\phi \, \left[ \frac{d p_{wf}(t)}{d t} + J^{-1} \frac{d q_{\uparrow}}{d t} \right]

which leads to

LaTeX Math Block Reference
anchorCRMST
.



This equation The equation 

LaTeX Math Block Reference
anchorCRMST
can be integrated explicitly:

LaTeX Math Block
anchorO2Q4L
alignmentleft
q^{\uparrow} (t) =\exp(-t/\tau)  \cdot \left[ \ q^{\uparrow} (0) + \tau^{-1} \cdot  \int_0^t \exp(s/\tau) \left[ f \cdot q^{\downarrow}(s) - \gamma \frac{dp}{ds} \right] ds   \ \right]

...

and written in equivalent form:

LaTeX Math Block
anchorM00IXY9PYZ
alignmentleft
E[\tau, \gamma, f] = \sum_k \big[q^{\uparrow} (t) =\exp(-t/\tau)  \cdot \left[ \ q^{\uparrow} (t_k0) + 
\tau^{-1} \gamma \tildecdot  q^{\uparrow}(t_k\big( p(0)  - p(t) \big]^2cdot   \rightarrow \min 

The constraints are:

LaTeX Math Block
anchor4SBJA
alignmentleft
\tau \geq  0 , \quad \gamma \geq 0,  \quad  f \geq 0

...

\exp(t/\tau) \big)
+\tau^{-1} \cdot  \int_0^t \exp(s/\tau) \left[ f \cdot q^{\downarrow}(s) + \gamma \cdot p(s) \right] ds   \ \right]


The 
objective function is:

LaTeX Math Block
anchorINEYCM00IX
alignmentleft
E[\tau, \gamma, f] \leq 1

CRMP – Multi-Injector Capacitance Resistance Model

The model equation is:

LaTeX Math Block
anchorO2A2V
alignmentleft
q^{\uparrow}_n (t) +  \tau_n \cdot  \frac{ d = \sum_k \big[ q^{\uparrow}(t_k) - \tilde q^{\uparrow}_n}{ dt }= \sum_m f_{nm} \cdot q^{\downarrow}_m(t)  - \gamma_n  \cdot  \frac{d p_n}{dt}

...

(t_k) \big]^2   \rightarrow \min 


The basic constraints are:

LaTeX Math Block
anchorqexp4SBJA
alignmentleft
q^{\uparrow}_n (t) =\exp(-t/\tau_n) \cdot \left[ \  q^{\uparrow}_n (0) + \tau_n^{-1}  \cdot \int_0^t \exp(s/\tau_n) \left[ \sum_m f_{nm} q^{\downarrow}_m(s) - \gamma_n \frac{dp_n}{ds} \right] ds \ \right]

The objective function is:

\tau \geq  0 , \quad \gamma \geq 0,  \quad  f \geq 0


The additional constraints may be imposed as:

LaTeX Math Block
anchorINEYC
alignmentleft
f \leq 1

which means that a part of injection (

LaTeX Math Inline
body1 - f
) is going away from the reservoir drained by producer.

CRMP – Multi-Injector Capacitance Resistance Model


The model equation is:

LaTeX Math Block
anchorO2A2V
alignmentleft
q^{\uparrow}_n (t) +  \tau_n \cdot  \frac{ d q^{\uparrow}_n}{ dt }= \sum_m f_{nm} \cdot q^{\downarrow}_m(t)  - \gamma_n  \cdot  \frac{d p_n}{dt}


This equation can be integrated explicitly:

LaTeX Math Block
anchorqexp
alignmentleft
q^{\uparrow}_n (t) =\exp(-t/\tau_n) \cdot \left[ \ 
LaTeX Math Block
anchorPQYQ2
alignmentleft
E[\tau_n, \gamma_n, f_{nm}] = \sum_k \sum_n \big[ q^{\uparrow}_n (t_k0) + \tau_n^{-1}  \tildecdot q^{\uparrow}_n(t_kint_0^t \exp(s/\tau_n) \big]^2   \rightarrow \min 

The constraints are:

left[ \sum_m  f_{nm} \cdot  q^{\downarrow}_m(s) - \gamma_n \frac{dp_n}{ds} \right] ds  \right]


The objective function is:

LaTeX Math Block
anchorPQYQ2
alignmentleft
E[\tau_n, \gamma_n,
LaTeX Math Block
anchorW2JXJ
alignmentleft
\tau_n \geq  0 ,  \quad \gamma_n \geq 0,  \quad f_{nm}] \geq  0 , \quad= \sum_k \sum_i^{N^{\uparrow}} f_{nm} \leq 1

ICRM  – Multi-Injector Integrated Capacitance Resistance Model

The model equation is:

LaTeX Math Block
anchorLBWVO
alignmentleft
Q^n \big[ q^{\uparrow}_n(t_k) - \tilde q^{\uparrow}_n (t_k) = \sum_n f_{nm} Q^{\downarrow}_n(t)  - big]^2   \rightarrow \min 


The constraints are:

LaTeX Math Block
anchorW2JXJ
alignmentleft
\tau_n \cdotgeq  0 ,  \big[quad q^{\uparrow}gamma_n(t) - q^{\uparrow}_n(0) \big]  - \gamma_n \cdot \big[ p_n(t) - p_n(0) \big] \geq 0,  \quad f_{nm} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{nm} \leq 1

ICRM  – Integrated Multi-Injector Capacitance Resistance Model


The model equation isThe objective function is:

LaTeX Math Block
anchorFNDCZLBWVO
alignmentleft
E[\tau_n, \gamma_n,Q^{\uparrow}_n (t) = \sum_n f_{nm}] =  \sum_k \sum_nQ^{\downarrow}_n(t)  - \tau_n \cdot \big[ Q^q^{\uparrow}_n(t_k) - \tilde Q^q^{\uparrow}_n(t_k0) \big]^2  - \rightarrow \min gamma_n \cdot \big[ p_n(t) - p_n(0) \big]


The objective function isThe constraints are:

LaTeX Math Block
anchorVBB0SFNDCZ
alignmentleft
E[\tau_j \geq  0 ,  \quadn, \gamma_n \geq 0,  \quad f_{ijnm}] \geq  0= , \quadsum_k \sum_i^{N^{n \big[ Q^{\uparrow}} f_{ij} \leq 1

PCRM  – Multi-Injector Liquid-Control Capacitance Resistance Model

_n(t_k) - \tilde Q^{\uparrow}_n(t_k) \big]^2   \rightarrow \min 


The constraints areThe model equation is:

LaTeX Math Block
anchorJ57KHVBB0S
alignmentleft
p_n(t) = p_n(0) - \tau_n /\tau_j \geq  0 ,  \quad \gamma_n \geq 0, \cdot \big[quad q^f_{\uparrow}_n(t) - q^{\uparrow}_n(0) \big]  - \gamma_n^{-1} \cdot Q^{\uparrow}_n (t) + \gamma_n^{-1} \cdot \sum_m f_{nm} Q^{\downarrow}_m(t)  ij} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1


QCRM  – Liquid-Control Multi-Injector  Capacitance Resistance Model


The model equation isThe objective function is:

LaTeX Math Block
anchorHRSYFQCRM
alignmentleft
E[\taup_n, \gamma_n, f_{nm}] =  \sum_k \sum_n(t) = p_n(0) - \tau_n / \gamma_n  \cdot \big[ p_q^{\uparrow}_n(t_k) - \tilde pq^{\uparrow}_n(t_k0) \big]^2  - \rightarrowgamma_n^{-1} \min 

The constraints are:

LaTeX Math Block
anchor4BDL3
alignmentleft
\tau_n \geq  0 ,  \quad \gamma_n \geq 0,  \quad cdot Q^{\uparrow}_n (t) + \gamma_n^{-1} \cdot \sum_m f_{nm} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1 Q^{\downarrow}_m(t)  


The objective function is:

LaTeX Math Block
anchorHRSYF
alignmentleft
E[\tau_n, \gamma_n, f_{nm}] =  \sum_k \sum_n \big[ p_n(t_k) - \tilde p_n(t_k) \big]^2   \rightarrow \min 


The constraints are:

LaTeX Math Block
anchor4BDL3
alignmentleft
\tau_n \geq  0 ,  \quad \gamma_n \geq 0,  \quad f_{nm} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1,  \quad p_{nr}(0) > 0


where

LaTeX Math Block
anchor7O26X
alignmentleft
p_{nr}(0) = p_n(0) + (\tau_n / \gamma_n)  \cdot q^{\uparrow}_n(0)

is the initial formation pressure.

The equation

LaTeX Math Block Reference
anchorQCRM
 can be re-written with explicit form of initial formation pressure:

LaTeX Math Block
anchorN4TZ7
alignmentleft
p_n(t) = p_{nr}(0) + (\tau_n / \gamma_n)  \cdot  q^{\uparrow}_n(t)  + \gamma_n^{-1} \cdot \sum_m f_{nm}  \ Q_m^{\downarrow}(t)   

where

LaTeX Math Inline
bodyQ_m
 could be both producer
LaTeX Math Inline
body--uriencoded--Q_m%5e%7B\uparrow%7D
or injector
LaTeX Math Inline
body--uriencoded--Q_m%5e%7B\downarrow%7D
.


If 

LaTeX Math Inline
body--uriencoded--p_%7Bnr%7D(0)
 is known then it can be fixed during the search loop which normally improves the quality of future production forecasts.


XCRM  – Liquid-Control Cross-well Capacitance Resistance Model


Some extensions to conventional CRM model can be found in XCRM – Liquid-Control Cross-well Capacitance Resistance Model @model.


ELPM  – Explicit Linear Production Model

Some extensions to conventional CRM model can be found in Explicit Linear Production Model


See Also

...

Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Capacitance Resistance Model (CRM)

Production – Injection Pairing @ model

[ Slightly compressible Material Balance Pressure @model ]

Show If
grouparax
Panel
bgColorpapayawhip
titleARAX

CRM as MDCV @model

...