Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Excerpt

Inverse problem to pressure convolution, performed as a fully or semi-automated search for initial pressure for every well and Unit-rate Transient Responses (UTR) for wells and cross-well intervals in order to fit the sandface pressure response  (usually recalculated from PDG data using wellbore flow model for depth adjustment ) to total sandface flow rate variation history (usually recalculated from daily allocations based on surface well tests).


Expand
titleContents


Column
width70%


Panel
bgColorAzure

Table of Contents
indent10 px
stylecircle



Column
width30%



Basic concept


The basic element of deconvolution is the pressure Unit-rate Transient Response (UTR) which is a sandface pressure response  response to a the total sandface unit-rate production.

Multiwell deconvolution (MDCV) specifies two types of UTRDrawdown Transient Response (DTR) and Cross-well Transient Response (CTR).

The Drawdown Transient Response (DTR) is the the sandface pressure response of a given well to its its total sandface unit-rate production in absence of the other wells.

It is equivalent to conventional drawdown test Drawdown Test with sandface unit-rate production.


The Cross-well Transient Response (CTR) is the the sandface pressure response of a given well to the the total sandface unit-rate production of the offset well in absence of the other wells. 

It is equivalent to the pressure interference test the Pressure Interference Test with the unit-rate production in disturbing well.


The pressure convolution principle itself has some limitations and may not be adequate for some practical cases.

For example, changing reservoir conditions, high compressibility – everything which breaks linearity of diffusion equations.

There are some workarounds on these cases but the best practice is to check the validity of pressure convolution (and therefore the applicability of MDCV) on the simple synthetic 2-well Dynamic Flow Model (DFM) with the typical for the given case  reservoir-fluid-production conditionsMDCV is only working in low-compressibility formations, hence before using MDCV one should analyse the data to see if this condition is met for the tested area.


MDCV can be performed in two options: Radial Deconvolution (

Hint
0RDCV
1Radial Deconvolution
) and Cross-well Deconvolution (
Hint
0XDCV
1Cross-well Deconvolution
).


Radial Deconvolution (

Hint
0RDCV
1Radial Deconvolution
) corrrelates correlates pressure and rate in selected well (called pressure-tested well) and only account for the rates in surrounding wells (called rate-tested wells)  in order to reconstruct:

  • Pressure response of the well to its unit rate production in absence of other wells (also called Diagonal Transient Response or 
    Hint
    0DTR
    1Diagonal Transient Response
    2DTR
    )
  • Pressure response of the well to offset well unit rate production in absence of other wells  (also called Cross-well Transient Response or 
    Hint
    0CTR
    1Cross-well transient response
    2CTR
    )

A group of 

LaTeX Math Inline
bodyN
 wells with one selected pressure-tested well has 
LaTeX Math Inline
bodyN
  transient responses: 1 diagonal transient response and  
LaTeX Math Inline
bodyN-1
 cross-well transient responses.


The main difference between RDCV and single-well deconvolution (SDCV ) is that it takes into account offset wells impact on tested well pressure.

Only rates are taken into account for offset wells in RDCV.


In case a group of tested wells have mulitple pressue gauge installations one may wish to deconvolve the unit-rate transient responses using all of the pressure data which is called Cross-well deconvolution (

Hint
0XDCV
1Cross-well Deconvolution
).


The main advantage of 

Hint
0XDCV
1Cross-well Deconvolution
over 
Hint
0RDCV
1Radial Deconvolution
 is the ability to simulate and interpret all PDG simultaneiously, resulting in  mopre information and better constrain and stability of deconvolution process.

The group of 

LaTeX Math Inline
bodyN
 pressure-tested wells has 
LaTeX Math Inline
bodyN^2
  transient responses, because every well has 1 diagonal transient response and 
LaTeX Math Inline
bodyN-1
 cross-well transient responses thus having 
LaTeX Math Inline
bodyN
 transient responses for each well.

The intervals between two wells with pressure gauge instaltions results in two transient response: first well onto the second well and revers.

This may indicate anisotropy of pressure propagation in counter directions and shed the light on the resevroir physics between these wells.


Once all possible DTR/CTR are deconvolved one can perform a conventional  type-curve analysis for each well, defining the type and distance to the boundary, estimating skin, transmissibility and diffusivity around each well.

Unlike routine numericial fitting, where 

LaTeX Math Inline
bodyN
 pressure responses to complicated rate history are being fit for 
LaTeX Math Inline
bodyN
 wells, one can run XDCV  to get 
LaTeX Math Inline
bodyN^2
 responses to very simple rate history (unit rate production) and then fit them all with diffusion models (sequentially or in parallel) by varying the same 
LaTeX Math Inline
body4N
 parameters (current formation pressure around every well Pe, skin-factor S for every well, and usually, transmissibility σ + pressure diffusivity χ around each well). 


Main benefits of 

Hint
0MDCV
1Multiwell deconvolution
 are:


  • Reconstruction of formation pressure history 

  • Rate corrections for random mistake

  • The ability to get transient responses without initial knowledge of reservoir geometry


Main disadvantages of 

Hint
0MDCV
1Multiwell deconvolution
 are:

  • Uncertainty in DTR/CTR, in case of uneventfull production history or synchronized flow variation of two (or more) wells

  • Error increasing with the number of wells in the test


Mathematics


In linear formation approхimation the pressure response to the varying rates in the offset wells is subject to convolution equation:


LaTeX Math Block
alignmentleft
p_n(t) = p_{i,n} + \sum_{k = 1}^N  \sum_{\alpha = 1}^{N_k} \big( q^{(\alpha)}_k - q^{(\alpha-1)}_k \big) \ p^u_{nk}(t - t_{\alpha k})

where




1

LaTeX Math Inline
bodyp_n(t)

pressure at

LaTeX Math Inline
bodyn
-th well at arbitrary moment of time
LaTeX Math Inline
bodyt

2

LaTeX Math Inline
bodyp_{i,n}

initial pressure at

LaTeX Math Inline
bodyn
-the well

3

LaTeX Math Inline
bodyq^{(\alpha)}_n

rate value of

LaTeX Math Inline
body\alpha
-th transient at
LaTeX Math Inline
bodyn
-th well

4

LaTeX Math Inline
bodyp^u_{nk} (t)

pressure transient response in

LaTeX Math Inline
bodyn
-th wel to unit-rate production from
LaTeX Math Inline
bodyk
-th well

5

LaTeX Math Inline
bodyt_{\alpha k}

starting point of the

LaTeX Math Inline
body\alpha
-th transient in
LaTeX Math Inline
bodyk
-th well

6

LaTeX Math Inline
bodyN

number of wells in the test
7

LaTeX Math Inline
bodyN_k

number of transients in

LaTeX Math Inline
bodyk
-th well

with assumption:

  • LaTeX Math Inline
    bodyq^{(-1)}_k = 0
     – for any well 
    LaTeX Math Inline
    bodyk = 1.. \ N


  • LaTeX Math Inline
    bodyp^u_{nk}(\tau) = 0
     at 
    LaTeX Math Inline
    body\tau < 0
     for any pair of wells 
    LaTeX Math Inline
    bodyn, k = 1.. \ N


Hence, convolution is using initial formation pressure 

LaTeX Math Inline
bodyp_{i, n}
, unit-rate transient responses of  wells and cross-well intervals 
LaTeX Math Inline
bodyp^u_{nk} (t)
 and rate histories 
LaTeX Math Inline
body \{ q_k (t) \}_{k = 1 .. N}
 to calculate pressure bottom-hole pressure response as function time 
LaTeX Math Inline
bodyp_n(t)
:

LaTeX Math Block
anchor1
alignmentleft
\big\{ p_{i, n}, \{ p^u_{nk} (t),   q_k (t)   \}_{k = 1 .. N} \big\} \rightarrow  p_n(t)



The 

Hint
0MDCV
1Multiwell Deconvolution
is a reverse problem to convolution and search for 
LaTeX Math Inline
bodyN^2
 functions 
LaTeX Math Inline
bodyp^u_{nk} (t)
  and 
LaTeX Math Inline
bodyN
 numbers 
LaTeX Math Inline
bodyp_{i, n}
  using the historical pressure and rate records 
LaTeX Math Inline
body\{ p_k(t), \ \{ q^{(\alpha)}_k \}_{\alpha = 1.. N_k} \}_{k = 1 .. N}
 and provides the adjustment to the rate histories for the small mistakes 
LaTeX Math Inline
body \{ q_k \}_{\alpha = 1.. N_k} \rightarrow \{ \tilde q_k \}_{\alpha = 1.. N_k}
:

LaTeX Math Block
anchor1
alignmentleft
\big\{ p_k(t), q_k (t) \big\} _{k = 1 .. N}   \rightarrow  \big\{  p_{i, n}, \{ p^u_{nk} (t),  \tilde  q_k (t)   \}_{k = 1 .. N}  \big\} 


The solution of deconvolution problem is based on the minimization of the objective function:

LaTeX Math Block
anchorM2BPX
alignmentleft
E(\{ p_{i,n}, p^u_{nk}(\tau), q^{(\alpha)}_n \}_{n=1..N}) \rightarrow {\rm min}

where

LaTeX Math Block
anchor1
alignmentleft
E(\{ p_{i,n}, p^u_{nk}(\tau), q^{(\alpha)}_n \}_{n=1..N}) = \sum_{n=1}^N \Big(p_{i,n} + \sum_{k = 1}^N  \sum_{\alpha = 1}^{N_k} (q^{(\alpha)}_k - q^{(\alpha-1)}_k ) \ p^u_{nk}(t - t_{\alpha k})- p_n(t) \Big)^2 
+ w_c \, \sum_{n = 1}^N \sum_{k = 1}^{N_k} {\rm Curv} \big( p^u_{nk}(\tau) \big) + 
w_q \, \sum_{k = 1}^N  \sum_{\alpha = 1}^{N_k} \big( q^{(\alpha)}_k - \tilde q^{(\alpha)}_k \big)^2 

and objective function components have the following meaning:



LaTeX Math Inline
body\sum_{n=1}^N \Big(p_{i,n} + \sum_{k = 1}^N \sum_{\alpha = 1}^{N_k} (q^{(\alpha)}_k - q^{(\alpha-1)}_k ) \ p^u_{nk}(t - t_{\alpha k})- p_n(t) \Big)^2

is responsible for minimizing discrepancy between model and historical pressure data

LaTeX Math Inline
bodyw_c \, \sum_{n = 1}^N \sum_{k = 1}^{N_k} {\rm Curv} \big( p^u_{nk}(\tau) \big)

is responsible for minimizing the curvature of the transient response (which reflects the diffusion character of the pressure response to well flow)

LaTeX Math Inline
bodyw_q \, \sum_{k = 1}^N \sum_{\alpha = 1}^{N_k} \big( q^{(\alpha)}_k - \tilde q^{(\alpha)}_k \big)^2

is responsible for minimizing discrepancy between model and historical rate data (since historical rate records are not accurate at the time scale of pressure sampling)


In practice the above approach is not stable.

One of the efficeint regularizations has been suggested by Shroeter 


One of the most efficient method in minimizing the above objective function is the hybrid of genetic and quasinewton algorithms  in parallel on multicore workstation.

The 

Hint
0MDCV
1Multiwell Deconvolution
also adjusts the rate histories for each well 
LaTeX Math Inline
body\{ q^{(\alpha)}_k \}_{\alpha = 1.. N_k} \rightarrow \{ \tilde q^{(\alpha)}_k \}_{\alpha = 1.. N_k}
 to achieve the best macth of the bottom hole pressure readings.


The weight coefficients 

LaTeX Math Inline
bodyw_c
 and  
LaTeX Math Inline
bodyw_q
  control contributions from corresponding components and should be calibrated to the reference transients (manuualy or automatically).


The 

Hint
0MDCV
1Multiwell Deconvolution
methodology constitute a big area of practical knowledge and not all the tricks and solutions are currenlty automated and require a practical skill. 


Sample


Sample #1 –  RDCV

На рис. 2.1.2 представлена карта участка с тремя скважинами.


Синтетическая история работы добывающей скважины с простым поведением продуктивности.

Рис. 2.1.2. Скв. Р1. Мультискважинная деконволюция

Рис. 2.1.3. Скв. Р1.Сравнение мультискважинной деконволюции с односкважинной деконволюцией


На Рис. 2.1.4 приведена история дебитов и давлений по всем скважинам.

Рис. 2.1.4. P1. Сравнение полученной истории дебитов и давления с исходными


Пример #2 – КДКВ


На Рис. 2.1.5 представлена карта участка с тремя скважинами.

Рис. 2.1.5. Синтетическая история работы добывающей скважины с простым поведением продуктивности


Рис. 2.1.6. Скв. Р1. Сравнение мультискважинной деконволюции и односкважинной деконволюции

Рис. 2.1.7. Влияние скважины P2 на скважину P1


Рис. 2.1.8. Влияние скважины W3 на скважину P1

Рис. 2.1.9. Скв. Р2. Сравнение мультискважинной деконволюции и односкважинной деконволюции


Рис. 2.1.10. Влияние скважины 1 на скважину 2

Рис. 2.1.11. Влияние скважины W3 на скважину P2

Рис. 2.1.12. Сравнение мультискважинной деконволюции и односкважинной деконволюции

Рис. 2.1.13. Влияние скважины P1 на скважину W3

Рис. 2.1.14. Скв. W3 Влияние скважины P2 на скважину W3


На Рис. 2.1.15 приведена история дебитов и давлений по всем скважинам.

Рис. 2.1.15. P1. Сравнение полученной истории дебитов и давления с исходными

Рис. 2.1.16. P2. Сравнение полученной истории дебитов и давления с исходными

Рис. 2.1.17. W3. Сравнение полученной истории дебитов и давления с исходными


...