Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Excerpt

Inverse problem to pressure convolution, performed as a fully or semi-automated search for initial pressure for every well and unitUnit-rate transient responses Transient Responses (UTR) for wells and cross-well intervals in order to fit the sandface pressure response  (usually recalculated from PDG data using wellbore flow model for depth adjustment adjustment) to total sandface flow rate variation history (usually recalculated from daily allocations based on surface well tests, see Fig. 1).

Expand
titleContents

Image Added

Fig. 1. Production/Injection History


Column
width70%
Panel
bgColorAzure

Table of Contents
indent10 px
stylecircle

Column
width30%

Basic concept

The basic element of deconvolution is the pressure Transient Response (

Hint
0TR
1Transient Response
2DTR
) to a unit-rate flow.
Hint
0MDCV
1Multiwell deconvolution
 specifies two types of 
Hint
0TR
1Transient Response
2DTR
Drawdown Transient Response (
Hint
0DTR
1Drawdown Transient Response
2DTR
)
 and Cross-well transient response (
Hint
0CTR
1Cross-well transient response
2CTR
 Unit-rate Transient Response (UTR) which is a sandface pressure response to the total sandface unit-rate production (see Fig. 2).

Image Added

Fig. 2. UTR output diagram from XDCV. The column wells showing pressure response to row wells.

Diagonal elements are showing self-response DTRs. Non-diagonal elements showing cross-well response CTRs.


Multiwell deconvolution (MDCV) specifies two types of UTRDrawdown Transient Response (DTR) and Cross-well Transient Response (CTR).

The Drawdown Transient Response (

Hint
0DTR
1Drawdown Transient Response
2DTR
Response (DTR) is the imaginary sandface pressure response of a given well to its its total sandface unit-rate production in absence of the other wellsunder condition that no other well is producing/injecting.

It is equivalent to conventional drawdown test Drawdown Test with sandface unit-rate production as if the well is not interfering with surrounding wells.

The Cross-well Transient Response (

Hint
0CTR
1Cross-well transient response
2CTR
)  is the Response (CTR) is the sandface pressure response of a given well to the the total sandface unit-rate production of the offset well in absence of the other wellswell under condition that no other well is producing/injecting

It is equivalent to the pressure interference test the Pressure Interference Test with the unit-rate production in disturbing well as if the receiving well is shut-in and no other well .

Hint
0MDCV
1Multiwell deconvolution
 is only working in low-compressibility formations, hence before using 
Hint
0MDCV
1Multiwell deconvolution
 one should analyze the data to see if this condition is met for the tested area.

is producing/injecting.


Although the UTR may last the infinite time but in reservoir engineering practise the UTR is usually assumed to be captured when it develops a boundary-dominated Late Time Response (LTR). It should be noted that sometimes the duration of production history is too short to sense the geometrical boundary and UTR will not capture it in full or not  see a boundary at all.  

The true UTRs are also difficult to acquire in practise as most wells are noticeably interferring during at long-term scales. The exception is the remote well or the well draining an isolated compartment. 

This defines the application of MDCV which pretends to decipher the UTR from BHP and Production/Injection History.

The pressure convolution principle itself has some limitations and may not be adequate for some practical cases.

For example, changing reservoir conditions, high compressibility – everything which breaks linearity of diffusion equations.

There are some workarounds on these cases but the best practice is to check the validity of pressure convolution (and therefore the applicability of MDCV) on the simple synthetic 2-well Dynamic Flow Model (DFM) with the typical for the given case  reservoir-fluid-production conditions.


MDCV

Hint
0MDCV
1Multiwell deconvolution
 can be performed in two options: Radial Deconvolution   ( Hint0RDCV1Radial Deconvolution) and ) and Cross-well Deconvolution   ( Hint0XDCV1Cross-well Deconvolution).


Radial Deconvolution Deconvolution ( Hint0RDCV1Radial Deconvolution) corrrelates ) correlates pressure and rate in selected well (called pressure-tested well) and only account for the rates in surrounding wells (called rate-tested wells)  in order to reconstruct:

  • Pressure response of the well to its unit rate production in absence of other wells (also called Diagonal Self-Response or Drawdown Transient Response or  Hint0DTR1Diagonal Transient Response2DTR)

  • Pressure response of the well to offset well unit rate production in absence of other wells  (also called  Cross-well Transient Response or  Hint0CTR1Cross-well transient response2CTR)

A group of 

LaTeX Math Inline
bodyN
 wells with one selected pressure-tested well has 
LaTeX Math Inline
bodyN
  transient responses: 1 diagonal transient response and  
LaTeX Math Inline
bodyN-1
 cross-well transient responses.


The main difference between between RDCV and single-well deconvolution (SDCV ) is that it takes into account offset wells impact on tested well pressure.

Only rates are taken into account for offset wells in RDCV.


In case a group of tested wells have mulitple pressue gauge installations one may wish to deconvolve the unit-rate transient responses using all of the pressure data which is called Cross-well deconvolution (

Hint
0XDCV
1Cross-well Deconvolution
Deconvolution (XDCV).


The main advantage of 

Hint
0XDCV
1Cross-well Deconvolution
over 
Hint
0RDCV
1Radial Deconvolution
XDCV over RDCV is the ability to simulate and interpret all PDG simultaneiouslysimultaneously, resulting in  mopre more information and better constrain and stability of deconvolution process.

The group of 

LaTeX Math Inline
bodyN
 pressure-tested wells has 
LaTeX Math Inline
bodyN^2
  transient responses, because every well has 1 diagonal transient response and 
LaTeX Math Inline
bodyN-1
 cross-well transient responses thus having 
LaTeX Math Inline
bodyN
 transient responses for each well.

The intervals between two wells with pressure gauge instaltions installations results in two transient response: first well onto the second well and revers.

This may indicate anisotropy of pressure propagation in counter directions and shed the light on the resevroir physics between these wells.


Once all possible DTR/CTR are deconvolved one can perform a conventional  type-curve analysis for each well, defining the type and distance to the boundary, estimating skin, transmissibility and diffusivity around each well.

Unlike routine numericial fitting, where 

LaTeX Math Inline
bodyN
 pressure responses to complicated rate history are being fit for 
LaTeX Math Inline
bodyN
 wells, one can run XDCV  to get 
LaTeX Math Inline
bodyN^2
 responses to very simple rate history (unit rate production) and then fit them all with diffusion models (sequentially or in parallel) by varying the same 
LaTeX Math Inline
body4N
 parameters (current formation pressure around every well Pe, skin-factor S for every well, and usually, transmissibility σ + pressure diffusivity χ around each well). 


Main benefits of  Hint0MDCV1Multiwell deconvolution are:


  • Reconstruction of formation pressure history 

  • Rate corrections for random mistake

  • The ability to get transient responses without initial knowledge of reservoir geometry


Main disadvantages of  Hint0MDCV1Multiwell deconvolution are:

  • Uncertainty in DTR/CTR, in case of uneventfull production history or synchronized correlated flow variation of two (or more) wells

  • Error Uncertainty in DTR/CTR is increasing with the number of wells in the test

Mathematics

In linear formation approхimation the pressure response to the varying rates in the offset wells is subject to convolution equation:

LaTeX Math Block
alignmentleft
p_n(t) = p_{i,n} + \sum_{k = 1}^N  \sum_{\alpha = 1}^{N_k} \big( q^{(\alpha)}_k - q^{(\alpha-1)}_k \big) \ p^u_{nk}(t - t_{\alpha k})

where

1

LaTeX Math Inline
bodyp_n(t)

pressure at

LaTeX Math Inline
bodyn
-th well at arbitrary moment of time
LaTeX Math Inline
bodyt

2

LaTeX Math Inline
bodyp_{i,n}

initial pressure at

LaTeX Math Inline
bodyn
-the well

3

LaTeX Math Inline
bodyq^{(\alpha)}_n

rate value of

LaTeX Math Inline
body\alpha
-th transient at
LaTeX Math Inline
bodyn
-th well

4

LaTeX Math Inline
bodyp^u_{nk} (t)

pressure transient response in

LaTeX Math Inline
bodyn
-th wel to unit-rate production from
LaTeX Math Inline
bodyk
-th well

5

LaTeX Math Inline
bodyt_{\alpha k}

starting point of the

LaTeX Math Inline
body\alpha
-th transient in
LaTeX Math Inline
bodyk
-th well

6

LaTeX Math Inline
bodyN

number of wells in the test7

LaTeX Math Inline
bodyN_k

number of transients in

LaTeX Math Inline
bodyk
-th well

with assumption:

LaTeX Math Inline
bodyq^{(-1)}_k = 0
 – for any well 
LaTeX Math Inline
bodyk = 1.. \ N
  • LaTeX Math Inline
    bodyp^u_{nk}(\tau) = 0
     at 
    LaTeX Math Inline
    body\tau < 0
     for any pair of wells 
    LaTeX Math Inline
    bodyn, k = 1.. \ N
  • Hence, convolution is using initial formation pressure 

    LaTeX Math Inline
    bodyp_{i, n}
    , unit-rate transient responses of  wells and cross-well intervals 
    LaTeX Math Inline
    bodyp^u_{nk} (t)
     and rate histories 
    LaTeX Math Inline
    body \{ q_k (t) \}_{k = 1 .. N}
     to calculate pressure bottom-hole pressure response as function time 
    LaTeX Math Inline
    bodyp_n(t)
    :

    LaTeX Math Block
    anchor1
    alignmentleft
    \big\{ p_{i, n}, \{ p^u_{nk} (t),   q_k (t)   \}_{k = 1 .. N} \big\} \rightarrow  p_n(t)

    The 

    Hint
    0MDCV
    1Multiwell Deconvolution
    is a reverse problem to convolution and search for 
    LaTeX Math Inline
    bodyN^2
     functions 
    LaTeX Math Inline
    bodyp^u_{nk} (t)
      and 
    LaTeX Math Inline
    bodyN
     numbers 
    LaTeX Math Inline
    bodyp_{i, n}
      using the historical pressure and rate records 
    LaTeX Math Inline
    body\{ p_k(t), \ \{ q^{(\alpha)}_k \}_{\alpha = 1.. N_k} \}_{k = 1 .. N}
     and provides the adjustment to the rate histories for the small mistakes 
    LaTeX Math Inline
    body \{ q_k \}_{\alpha = 1.. N_k} \rightarrow \{ \tilde q_k \}_{\alpha = 1.. N_k}
    :

    LaTeX Math Block
    anchor1
    alignmentleft
    \big\{ p_k(t), q_k (t) \big\} _{k = 1 .. N}   \rightarrow  \big\{  p_{i, n}, \{ p^u_{nk} (t),  \tilde  q_k (t)   \}_{k = 1 .. N}  \big\} 

    The solution of deconvolution problem is based on the minimization of the objective function:

    LaTeX Math Block
    anchorM2BPX
    alignmentleft
    E(\{ p_{i,n}, p^u_{nk}(\tau), q^{(\alpha)}_n \}_{n=1..N}) \rightarrow {\rm min}

    where

    LaTeX Math Block
    anchor1
    alignmentleft
    E(\{ p_{i,n}, p^u_{nk}(\tau), q^{(\alpha)}_n \}_{n=1..N}) = \sum_{n=1}^N \Big(p_{i,n} + \sum_{k = 1}^N  \sum_{\alpha = 1}^{N_k} (q^{(\alpha)}_k - q^{(\alpha-1)}_k ) \ p^u_{nk}(t - t_{\alpha k})- p_n(t) \Big)^2 
    + w_c \, \sum_{n = 1}^N \sum_{k = 1}^{N_k} {\rm Curv} \big( p^u_{nk}(\tau) \big) + 
    w_q \, \sum_{k = 1}^N  \sum_{\alpha = 1}^{N_k} \big( q^{(\alpha)}_k - \tilde q^{(\alpha)}_k \big)^2 

    and objective function components have the following meaning:

    LaTeX Math Inline
    body\sum_{n=1}^N \Big(p_{i,n} + \sum_{k = 1}^N \sum_{\alpha = 1}^{N_k} (q^{(\alpha)}_k - q^{(\alpha-1)}_k ) \ p^u_{nk}(t - t_{\alpha k})- p_n(t) \Big)^2

    is responsible for minimizing discrepancy between model and historical pressure data

    LaTeX Math Inline
    bodyw_c \, \sum_{n = 1}^N \sum_{k = 1}^{N_k} {\rm Curv} \big( p^u_{nk}(\tau) \big)

    is responsible for minimizing the curvature of the transient response (which reflects the diffusion character of the pressure response to well flow)

    LaTeX Math Inline
    bodyw_q \, \sum_{k = 1}^N \sum_{\alpha = 1}^{N_k} \big( q^{(\alpha)}_k - \tilde q^{(\alpha)}_k \big)^2

    is responsible for minimizing discrepancy between model and historical rate data (since historical rate records are not accurate at the time scale of pressure sampling)

    In practice the above approach is not stable.

    One of the efficeint regularizations has been suggested by Shroeter 

    One of the most efficient method in minimizing the above objective function is the hybrid of genetic and quasinewton algorithms  in parallel on multicore workstation.

    The 

    Hint
    0MDCV
    1Multiwell Deconvolution
    also adjusts the rate histories for each well 
    LaTeX Math Inline
    body\{ q^{(\alpha)}_k \}_{\alpha = 1.. N_k} \rightarrow \{ \tilde q^{(\alpha)}_k \}_{\alpha = 1.. N_k}
     to achieve the best macth of the bottom hole pressure readings.

    The weight coefficients 

    LaTeX Math Inline
    bodyw_c
     and  
    LaTeX Math Inline
    bodyw_q
      control contributions from corresponding components and should be calibrated to the reference transients (manuualy or automatically).

    The 

    Hint
    0MDCV
    1Multiwell Deconvolution
    methodology constitute a big area of practical knowledge and not all the tricks and solutions are currenlty automated and require a practical skill. 

    Sample

    Sample #1 –  RDCV

    На рис. 2.1.2 представлена карта участка с тремя скважинами.

    Image Removed

    Синтетическая история работы добывающей скважины с простым поведением продуктивности.

    Image Removed

    Рис. 2.1.2. Скв. Р1. Мультискважинная деконволюция

    Image Removed

    Рис. 2.1.3. Скв. Р1.Сравнение мультискважинной деконволюции с односкважинной деконволюциейНа Рис. 2.1.4 приведена история дебитов и давлений по всем скважинам.

    Image Removed

    Image Removed

    Рис. 2.1.4. P1. Сравнение полученной истории дебитов и давления с исходными

    Пример #2 – КДКВ

    На Рис. 2.1.5 представлена карта участка с тремя скважинами.

    Image Removed

    Рис. 2.1.5. Синтетическая история работы добывающей скважины с простым поведением продуктивности

    Image Removed

    Рис. 2.1.6. Скв. Р1. Сравнение мультискважинной деконволюции и односкважинной деконволюции

    Image Removed

    Рис. 2.1.7. Влияние скважины P2 на скважину P1

    Image RemovedРис. 2.1.8. Влияние скважины W3 на скважину P1

    Image Removed

    Рис. 2.1.9. Скв. Р2. Сравнение мультискважинной деконволюции и односкважинной деконволюции

    Image RemovedРис. 2.1.10. Влияние скважины 1 на скважину 2

    Image Removed

    Рис. 2.1.11. Влияние скважины W3 на скважину P2

    Image Removed

    Рис. 2.1.12. Сравнение мультискважинной деконволюции и односкважинной деконволюции

    Image Removed

    Рис. 2.1.13. Влияние скважины P1 на скважину W3

    Image Removed

    Рис. 2.1.14. Скв. W3 Влияние скважины P2 на скважину W3

    На Рис. 2.1.15 приведена история дебитов и давлений по всем скважинам.

    Image Removed

    Image Removed

    Рис. 2.1.15. P1. Сравнение полученной истории дебитов и давления с исходными

    Image Removed

    Image Removed

    Рис. 2.1.16. P2. Сравнение полученной истории дебитов и давления с исходными

    Image Removed

    Image Removed

    Рис. 2.1.17. W3. Сравнение полученной истории дебитов и давления с исходными


    See also

    ...

    Petroleum Industry / Upstream / Subsurface E&P Disciplines / Production Analysis (PA) / Pressure Deconvolution
    [ MDCV @model ]
    RDCV ][ RDCV @model ]RDCV @sample ]
    XDCV ]XDCV @model ]XDCV @sample ] 
    Multiwell Retrospective Testing (MRT) ]