Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

LaTeX Math Inline
bodyq^{\uparrow}(t)

total surface production

LaTeX Math Inline
bodyq^{\downarrow}(t)

total surface injection

LaTeX Math Inline
bodyf

share of injection which actually contributes to production

LaTeX Math Inline
bodyp_{wf}(t)

average bottomhole pressure in producers

LaTeX Math Inline
body\tau


LaTeX Math Inline
body\beta




Panel
bgColorOldLace
Expand
titleDerivation

The first assumption of CRM is that productivity index of producers stays constant in time:

LaTeX Math Block
anchorJ
alignmentleft
J = \frac{q_{\uparrow}(t)}{p_r(t) - p_{wf}(t)} = \rm const

which can re-written as explicit formula for formation pressure:

LaTeX Math Block
anchorp_r
alignmentleft
p_r(t) = p_{wf}(t) + J^{-1} q_{\uparrow}(t)


The second assumption is that drainage volume of producers-injectors system is finite and constant in time:

LaTeX Math Block
anchor1
alignmentleft
V_\phi = V_{rocks} \phi = \rm const


The third assumption is that total formation-fluid compressibility stays constant in time:

LaTeX Math Block
anchor4XNCY
alignmentleft
c_t \equiv \frac{1}{V_{\phi}} \cdot \frac{dV_{\phi}}{dp} = \frac{1}{V_{\phi}} \cdot \frac{1}{p_i - p_r(t) } \cdot \Bigg[ \int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau  \Bigg] = \rm const

where

LaTeX Math Inline
bodyp_i
– field-average initial formation pressure,
LaTeX Math Inline
bodyp_r(t)
– field-average formation pressure at time moment
LaTeX Math Inline
bodyt
,


The last equation can be rewritten as:

LaTeX Math Block
anchor4XNCY
alignmentleft
\int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau = c_t \, V_\phi \, [p_i - p_r(t)]

and differentiated

LaTeX Math Block
anchor4XNCY
alignmentleft
q_{\uparrow}(\tau) d\tau - f q_{\downarrow}(\tau) d\tau = - c_t \, V_\phi \, \frac{d p_r(t)}{d t}

and using

LaTeX Math Inline
bodyp_r(t)
from productivity equation
LaTeX Math Block Reference
anchorp_r
:

LaTeX Math Block
anchor4XNCY
alignmentleft
q_{\uparrow}(\tau) d\tau - f q_{\downarrow}(\tau) d\tau = - c_t \, V_\phi \, \bigg[ \frac{d p_{wf}(t)}{d t} + J^{-1} \frac{d q_{\uparrow}}{d t} \bigg]



...