Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

LaTeX Math Inline
bodyq^{\uparrow}(t)

total surface production

LaTeX Math Inline
bodyq^{\downarrow}(t)

total surface injection

LaTeX Math Inline
bodyf

share of injection which actually contributes to production

LaTeX Math Inline
bodyp_{wf}(t)

average bottomhole pressure in producers

LaTeX Math Inline
body\tau


LaTeX Math Inline
body\beta




Expand
titleDerivation

The first assumption of CRM is that productivity index of producers stays constant in time:

LaTeX Math Block
anchorJ
alignmentleft
J = \frac{q_{\uparrow}(t)}{p_r(t) - p_{wf}(t)} = \rm const

which can re-written as explicit formula for formation pressure:

LaTeX Math Block
anchorp_r
alignmentleft
p_r(t) = p_{wf}(t) + J^{-1} q_{\uparrow}(t)


The second assumption is that drainage volume of producers-injectors system is finite and constant in time:

LaTeX Math Block
anchor1
alignmentleft
V_\phi = V_{rocks} \phi = \rm const


The third assumption is that total formation-fluid compressibility stays constant in time:

LaTeX Math Block
anchor4XNCY
alignmentleft
c_t \equiv \frac{1}{V_{\phi}} \cdot \frac{dV_{\phi}}{dp} = \frac{1}{V_{\phi}} \cdot \frac{1}{p_i - p_r(t) } \cdot \Bigg[ \int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau  \Bigg] = \rm const

where

LaTeX Math Inline
bodyp_i
– field-average initial formation pressure,
LaTeX Math Inline
bodyp_r(t)
– field-average formation pressure at time moment
LaTeX Math Inline
bodyt
,


The last equation can be rewritten as:

LaTeX Math Block
anchor4XNCY
alignmentleft
\int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau = c_t \, V_\phi \, [p_i - p_r(t)]

and differentiated

LaTeX Math Block
anchor4XNCY
alignmentleft
q_{\uparrow}(\tau) d\tau - f q_{\downarrow}(\tau) d\tau = - c_t \, V_\phi \, \frac{d p_r(t)}{d t}

and using

LaTeX Math Inline
bodyp_r(t)
from productivity equation
LaTeX Math Block Reference
anchorp_r
:

LaTeX Math Block
anchor4XNCY
alignmentleft
q_{\uparrow}(\tau) d\tau - f q_{\downarrow}(\tau) d\tau = - c_t \, V_\phi \, \bigg[ \frac{d p_{wf}(t)}{d t} + J^{-1} \frac{d q_{\uparrow}}{d t} \bigg]


The target function is:

LaTeX Math Block
anchorM00IX
alignmentleft
E[\tau, \beta, f] = \sum_k \big[ q^{\uparrow}(t_k) - \tilde q^{\uparrow}(t_k) \big]^2   \rightarrow \min 

...

c_t \equiv \frac{1}{V_{\phi}} \cdot \frac{dV_{\phi}}{dp} =
 
\frac{
1
}{V_{\phi}} \cdot \frac{1}{p_i - p_r(t) } \cdot \Bigg[ \int_0^t q_{\uparrow}(\tau) d\tau - \int_0^t q_{\downarrow}(\tau) d\tau \Bigg] = \rm const
LaTeX Math Block
anchorVBB0S
alignmentleft
\tau_j \geq  0 ,  \quad \beta_j \geq 0,  \quad f_{ij} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1
Expand
titleDerivation
LaTeX Math Block
anchor1
alignmentleft
J = \frac{q(t)}{p_r(t) - p_{wf}(t)} = \rm const
LaTeX Math Block
anchor4XNCY
alignmentleft


...







References

...


1

2

3