Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

LaTeX Math Inline
bodym

indicates a mixture of fluid phases

LaTeX Math Inline
body\alpha = \{w,o,g \}

water, oil, gas phase indicator

LaTeX Math Inline
bodyl

measure length along wellbore trajectory

LaTeX Math Inline
bodyu_\alpha(l)

in-situ velocity of

LaTeX Math Inline
body\alpha
-phase fluid flow

LaTeX Math Inline
body\rho_\alpha(l)

LaTeX Math Inline
body\alpha
-phase fluid density

LaTeX Math Inline
body\rho_m(l)
 

cross-sectional average fluid density

LaTeX Math Inline
body \theta(l)

wellbore trajectory inclination to horizon

LaTeX Math Inline
bodyd(l)

cross-sectional average pipe flow diameter

LaTeX Math Inline
bodyA(l)

in-situ cross-sectional area

LaTeX Math Inline
bodyA(l) = 0.25 \, \pi \, d^2(l)

LaTeX Math Inline
bodyf(l)

Darci flow friction coefficient

LaTeX Math Inline
body\nu_\alpha

kinematic viscosity of

LaTeX Math Inline
body\alpha
-phase

LaTeX Math Inline
bodyT_\alpha(l)

temperature of

LaTeX Math Inline
body\alpha
-phase fluid flowing from reservoir into a wellbore






Expand
titleIllustration

Image Modified

Fig. 1. Wellbore Flow Model geometry



Equations 

LaTeX Math Block Reference
anchorMatBal
 – 
LaTeX Math Block Reference
anchordivT
 define a closed set of 3 scalar equations on 3 unknowns: pressure 
LaTeX Math Inline
bodyp(l)
, temperature 
LaTeX Math Inline
bodyT(l)
 and mixture-average fluid velocity 
LaTeX Math Inline
bodyu_m(l)
 .

...

volumetric water-component flow rate in wellbore draining points recalculated to standard surface conditions
volumetric oil-component flow rate in wellbore draining points recalculated to standard surface conditions
volumetric gas-component flow rate in wellbore draining points recalculated to standard surface conditions
volumetric water-phase flow rate in wellbore draining points
volumetric oil-phase flow rate in wellbore draining points
volumetric gas-phase flow rate in wellbore draining points
total well volumetric oil-component flow rate
total well volumetric gas-component flow rate
total well volumetric liquid-component flow rate
water-phase flow speed distribution and dynamics
oil-phase flow speed distribution and dynamics

LaTeX Math Inline
body(t,x,y,z)

time and space corrdinates ,

LaTeX Math Inline
body z
-axis is orientated towards the Earth centre,

LaTeX Math Inline
body(x,y)
define transversal plane to the
LaTeX Math Inline
body z
-axis

LaTeX Math Inline
body\mathbf{r} = (x, \ y, \ z)

position vector at which the flow equations are set

LaTeX Math Inline
bodyl (x, \ y, \ z)

measured depth along borehole wellbore trajectory

LaTeX Math Inline
bodydl^2 = dx^2 + dy^2 + dz^2
starting from tubing head
LaTeX Math Inline
bodyl (x = x_0, \ y=y_0, \ z = z_{THP}) = 0

LaTeX Math Inline
bodyq_{mW} \alpha(t, l) = \frac{d m_W}{dt}

speed of water-component mass change in wellbore draining points

LaTeX Math Inline
bodyq_{mO} = \frac{d m_O}{dt}

speed of oil-component mass change in wellbore draining points

LaTeX Math Inline
bodyq_{mG} = \frac{d m_G}{dt}

speed of gas-component mass change in wellbore draining points

LaTeX Math Inline
bodyq_W = \frac{1}{\rho_W^{\LARGE \circ}} \frac{d m_W}{dt} = \frac{d V_{Ww}^{\LARGE \circ}}{dt} = \frac{1}{B_w} q_w

LaTeX Math Inline
bodyq_O = \frac{1}{\rho_O^{\LARGE \circ}} \frac{d m_O}{dt} = \frac{d V_{Oo}^{\LARGE \circ}}{dt} + \frac{d V_{Og}^{\LARGE \circ}}{dt} = \frac{1}{B_o} q_o + \frac{R_v}{B_g} q_g

V_\alpha}{dt}

volumetric flow rate

LaTeX Math Inline
body\alpha
-phase fluid at wellbore depth
LaTeX Math Inline
bodyl


LaTeX Math Inline
bodyu_\alpha (t, l)

LaTeX Math Inline
body\alpha
-phase flow speed at wellbore depth
LaTeX Math Inline
bodyl

LaTeX Math Inline
bodyq_G = \frac{1}{\rho_G^{\LARGE \circ}} \frac{d m_G}{dt} = \frac{d V_{Gg}^{\LARGE \circ}}{dt} + \frac{d V_{Go}^{\LARGE \circ}}{dt} = \frac{1}{B_g} q_g + \frac{R_s}{B_o} q_o

LaTeX Math Inline
bodyq_w = \frac{d V_w}{dt}

LaTeX Math Inline
bodyq_o = \frac{d V_o}{dt}

LaTeX Math Inline
bodyq_g = \frac{d V_g}{dt}

LaTeX Math Inline
bodyq^S_W =\frac{dV_{Ww}^S}{dt}

total well volumetric water-component flow rate

LaTeX Math Inline
bodyq^S_O = \frac{d (V_{Oo}^S + V_{Og}^S )}{dt}

LaTeX Math Inline
bodyq^S_G = \frac{d (V_{Gg}^S + V_{Go}^S )}{dt}

LaTeX Math Inline
bodyq^S_L = q^S_W + q^S_O

LaTeX Math Inline
body\vec u_w = \vec u_w (t, \vec r)

LaTeX Math Inline
body\vec u_o = \vec u_o (t, \vec r)

LaTeX Math Inline
body\vec u_g = \vec u_g (t, \vec r)

gas-phase flow speed distribution and dynamics

LaTeX Math Inline
body\vec g = (0, \ 0, \ g)

gravitational acceleration vector

LaTeX Math Inline
bodyg = 9.81 \ \rm m/s^2

gravitational acceleration constant

LaTeX Math Inline
body\rho_\alpha(Pp,T)

mass density of

LaTeX Math Inline
body\alpha
-phase fluid

LaTeX Math Inline
body\mu_\alpha(Pp,T)

viscosity of

LaTeX Math Inline
body\alpha
-phase fluid

LaTeX Math Inline
body\lambda_t(Pp,T,s_w, s_o, s_g)

effective thermal conductivity of the rocks with account for multiphase fluid saturation

LaTeX Math Inline
body\lambda_r(P,T)

rock matrix thermal conductivity

LaTeX Math Inline
body\lambda_\alpha(P,T)

thermal conductivity of

LaTeX Math Inline
body\alpha
-phase fluid

LaTeX Math Inline
body\rho_r(P,T)

rock matrix mass density

LaTeX Math Inline
body\eta_{s \alpha}(P,T)

differential adiabatic coefficient of

LaTeX Math Inline
body\alpha
-phase fluid

LaTeX Math Inline
bodyc_{pr}(P,T)

specific isobaric heat capacity of the rock matrix

LaTeX Math Inline
bodyc_{p\alpha}(P,T)

specific isobaric heat capacity of

LaTeX Math Inline
body\alpha
-phase fluid

LaTeX Math Inline
body \epsilon_\alpha (P, T)

differential Joule–Thomson coefficient of

LaTeX Math Inline
body\alpha
-phase fluid

дифференциальный коэффициент Джоуля-Томсона фазы 

LaTeX Math Inline
body\alpha

...