Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.


Definition



WFP – Well Performance Analysis  is a specialized analysis of correlation between surface flowrate and wellbore pressure as function of formation pressure and associated production optimization procedures.


Application



  • Assess current production performance

    • current distribution of recovery against expectations

    • current status and trends of recovery against expectations

    • current status and trends of reservoir depletion against expectations
       
    • current status and trends of water flood efficiency against expectations

    • compare performance of different wells or different groups of wells 

  • Identify and prioritize surveillance opportunities

  • Identify and prioritize redevelopment opportunities


Technology


Anchor
Stabilised
Stabilised


This type of analysis is performed on stabilised flow and does not cover transient behavior which is normally covered in Well Tests domain.

The flow is called stabilised if the well productivity index is not changing over time.


It's important to remember the difference between constant rate flow and stabilised flow.

The stabilised flow may go through a gradually changing flow rate due to formation pressure change, while the productivity index stays constant.

On the other hand, the constant rate flow may not represent a stabilised flow as the bottom-hole pressure and productivity index maybe still in transition after the last rate change.

The WFP methods are not applicable if the well flow is not stabilised even if the flow rate is maintained constant. 


There are two special reservoir flow regimes which are both stabilised and maintain constant flow rate:  steady state regime (SS) and pseudo-steady state regime (PSS).


The steady state regime (SS)  regime is reached when the flow is stabilised with the full pressure support at the external boundary.


The pseudo-steady state (PSS) regime is reached when the flow is stabilised  with no pressure support at the external boundary.


In both above cases, the drawdown and flow rate will stay constant upon productivity stabilisation.


As for formation and bottom-hole pressure in PSS they will be synchronously varying while in SS they will be staying constant.


The table below is summarizing the major differences between SS and PSS regimes.



Steady state regime (SS)Pseudo-steady state (PSS)
Boundary
Full pressure supportNo pressure support
Productivity index

LaTeX Math Inline
bodyJ(t) = \frac{q}{\Delta p}

constant

constant

Flow rate

LaTeX Math Inline
bodyq(t)

constant

constant

Drawdown

LaTeX Math Inline
body\Delta p(t) = p_e(t) - p_{wf}(t)

constant

constant

Botom-hole pressure

LaTeX Math Inline
bodyp_{wf}(t)

constant

varying

Formation pressure

LaTeX Math Inline
bodyp_e(t)

constant

varying



It's again important to avoid confusion between the termines stationary conditions (which mean that refered properties are not chaning in time) and stabilised flow conditions which may admit pressure and rate vraition.


In practice, the productivity index is usually not known at all times as there is not routine procedure to assess it.

It is usually accepted that a given formation takes the same time to stabilise the flow after any change in well flow conditions and the stabilisation time is assessed based on the well tests analysis.

Although, this is not strictly true and the flow stabilisation time depends on well-formation contact and reservoir property variation around a given well.

This is also compromised in multi-layer formations with cross-layer communication. 


The conventional WFP – Well Performance Analysis is perfomed as the cross-lot with two physical models:

and


Anchor
IPR
IPR

IPR – Inflow Performance Relationship



IPR – Inflow Performance Relation represnts the relation between the bottom-hole pressure 

LaTeX Math Inline
bodyp_{wf}
  and surface flow rate  
LaTeX Math Inline
bodyq
 during the stabilised flow:

LaTeX Math Block
anchor1
alignmentleft
p_{wf} = p_{wf}(q)

которая в общем случае является нелинейной.

Anchor
Js
Js

На практике удобно вести в рассмотрение понятие продуктивности скважины 

LaTeX Math Inline
bodyJ_s(q)
, которая определяется следующим образом:

LaTeX Math Block
anchorJ
alignmentleft
J_s(q_{\rm liq}) = \frac{q_{\rm liq}}{p_R-p_{wf}}


для нефтяной добывающей скважины, где

LaTeX Math Inline
bodyq_{liq} = q_o + q_w
добыча нефти и воды на поверхности

LaTeX Math Block
anchorJ
alignmentleft
J_s(q_g) = \frac{q_g}{p_R-p_{wf}}


для газовой добывающей скважины

LaTeX Math Block
anchorJ
alignmentleft
J_s(q_g) = \frac{q_g}{p_{wf}-p_R}


для газовой нагнетательной скважины

LaTeX Math Block
anchorJ
alignmentleft
J_s(q_w) = \frac{q_w}{p_R-p_{wf}}


для водяной нагнетательной скважины


где

LaTeX Math Inline
body q_w, \, q_o, \, q_g

дебиты (или расходы) воды, нефти, газа на устьевом сеператоре

LaTeX Math Inline
bodyp_R

средневзешанное пластовое давление по области дренирования пласта, вскрытого скважинной


Опираясь на эти определения ИКС может быть записана в универсальном вид для всех типов скважин:

LaTeX Math Block
anchorIPR
alignmentleft
p_{wf} = p_R - \frac{q}{J_s(q)}


При этом в кажом конкретном случае выбирается правильный знак второго слагаемого и правильный смысл дебита 

LaTeX Math Inline
bodyq
:

LaTeX Math Inline
body-

для добывающих скважин

LaTeX Math Inline
body+

для нагнетательных скважин

LaTeX Math Inline
bodyq=q_{\rm liq}=q_o+q_w

для добывающей нефтяной скважины

LaTeX Math Inline
bodyq=q_g

для газовых скважин (добывающих и нагнетельных)

LaTeX Math Inline
bodyq=q_w

для водяных скважин (добывающих и нагнетательных)



ИКС активно используется для анализа оптимального режима работы скважины.




Для однопластовой залежи со слабосжимаемым флюидом продуктивность не зависит от дебита  

LaTeX Math Inline
bodyJ_s = \rm const
 и график ИКС представляет собой прямую линию (Рис. 1).

Fig.1. IPR for low-compressible fluid production (water, undersaturated oil)


Это характерно для водозаборных скважин, водонагнетательных скважин и нефтяных скважин выше давления насыщения.


Для газовых скважин, газоконденсатных скважин, скважин с легкой нефтью, а также нефтяных скважин, где давление опустилось ниже давления насыщения

LaTeX Math Inline
bodyP_{wf} < P_b
, сжимаемость фильрующегося агента являестя высокой, закон фильтрации в прибойной зоне скважины становится нелинейным и кривая ИКС начинает отклоняется вниз от прямой линии (Рис. 2), что означает ухудшение продуктивности скважины с ростом скорости фильтрации в призабойной зоне.


Fig.2. IPR for compressible fluid production (gas, light oil, saturated oil)



Anchor
VLP
VLP

VLP – Vertical Lift Performance




КВЛ активно используется для анализа оптимального режима работы скважины.


Fig 3. VLP for low-compressible fluid

Fig 4. VLP for compressible fluid



Anchor
WFP
WFP

Sample Case 1 –  Oil Producer Analysis




Fig. 5. WFP for stairated oil



Fig. 6. WFP for stairated oil


Sample Case 2 – Water Injector Analysis




Sample Case 3 – Gas Producer Analysis




References