Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Expand
titleContent
Column
width70%
Panel
bgColorAzure

Table of Contents
maxLevel2
indent10 px
stylecircle

Column
width30%


CRM – Single-

...

Injector Capacitance Resistance Model


The model equation is:

LaTeX Math Block
anchorCRMST
alignmentleft
q^{\uparrow}(t) =  f+ \, q^{\downarrow}(t)  - \tau \cdot \frac{ d q^{\uparrow}}{ dt } =  f \cdot q^{\downarrow}(t)   - \betagamma \cdot \frac{d p_{wf}}{dt}

...

LaTeX Math Inline
bodyq^{\uparrow}(t)

average surface production per well

LaTeX Math Inline
bodyq^{\downarrow}(t)

average surface injection per well

LaTeX Math Inline
bodyp_{wf}(t)

average bottomhole pressure in producers

LaTeX Math Inline
bodyf

unitless constant, showing the share of injection which actually contributes to production

LaTeX Math Inline
body\tau

time-measure constant, related to well productivity

LaTeX Math Inline
body\beta

storage-measure constant, related to dynamic drainage volume and total compressibility

gamma

Reservoir Storage



The 

LaTeX Math Inline
The 
LaTeX Math Inline
body\tau
 and 
LaTeX Math Inline
body\betagamma
 constants are related to some primary well and reservoir properties:

LaTeX Math Block
anchorbeta
alignmentleft
\betagamma = c_t \, V_\phi
LaTeX Math Block
anchorIYYPU
alignmentleft
\tau = \frac{\betagamma}{J} = \frac{c_t  V_\phi}{J}

...

Panel
bgColorPapayaWhip
Expand
titleDerivation

The first assumption of CRM is that productivity index of producers stays constant in time:

LaTeX Math Block
anchorJ
alignmentleft
J = \frac{q_{\uparrow}(t)}{p_r(t) - p_{wf}(t)} = \rm const

which can be re-written as explicit formula for formation pressure:

LaTeX Math Block
anchorp_r
alignmentleft
p_r(t) = p_{wf}(t) + J^{-1} q_{\uparrow}(t)


The second assumption is that drainage volume of producers-injectors system is finite and constant in time:

LaTeX Math Block
anchor1
alignmentleft
V_\phi = V_r \phi = \rm const


The third assumption is that total formation-fluid compressibility stays constant in time:

LaTeX Math Block
anchorct
alignmentleft
c_t \equiv \frac{1}{V_{\phi}} \cdot \frac{dV_{\phi}}{dp} = \rm const

which can be easily integrated:

LaTeX Math Block
anchor4XNCY
alignmentleft
V_{\phi}(t) =V^\circ_{\phi} \cdot \exp \big[ - c_t \cdot  [p_i - p_r(t)] \big]

where

LaTeX Math Inline
bodyp_i
is field-average initial formation pressure,
LaTeX Math Inline
bodyV^\circ_{\phi}
is initial drainage volume,


LaTeX Math Inline
bodyp_r(t)
– field-average formation pressure at time moment
LaTeX Math Inline
bodyt
,

LaTeX Math Inline
bodyV_{\phi}(t)
is drainage volume at time moment
LaTeX Math Inline
bodyt
.


Equation

LaTeX Math Block Reference
anchorct
can be rewritten as:

LaTeX Math Block
anchordVphi
alignmentleft
dV_{\phi} = c_t \, V_{\phi} \, dp


The dynamic variations in drainage volume

LaTeX Math Inline
bodydV_{\phi}
are due to production/injection:

LaTeX Math Block
anchor4XNCY
alignmentleft
dV_{\phi}= \int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau

and leading to corresponding formation pressure variation:

LaTeX Math Block
anchor4XNCY
alignmentleft
dp = p_i - p_r(t)

thus making

LaTeX Math Block Reference
anchordVphi
become:

LaTeX Math Block
anchor4XNCY
alignmentleft
\int_0^t q_{\uparrow}(\tau) d\tau - f \int_0^t q_{\downarrow}(\tau) d\tau = c_t \, V_\phi \, [p_i - p_r(t)]

and differentiated

LaTeX Math Block
anchor4XNCY
alignmentleft
q_{\uparrow}(\tau)  = f q_{\downarrow}(\tau)  - c_t \, V_\phi \, \frac{d p_r(t)}{d t}

and substituting

LaTeX Math Inline
bodyp_r(t)
from productivity equation
LaTeX Math Block Reference
anchorp_r
:

LaTeX Math Block
anchor4XNCY
alignmentleft
q_{\uparrow}(\tau)  = f q_{\downarrow}(\tau)  - c_t \, V_\phi \, \biggleft[ \frac{d p_{wf}(t)}{d t} + J^{-1} \frac{d q_{\uparrow}}{d t} \biggright]

which leads to

LaTeX Math Block Reference
anchorCRMST
.



The equation 

LaTeX Math Block Reference
anchorCRMST
can be integrated explicitlyThe objective function is:

LaTeX Math Block
anchorM00IXO2Q4L
alignmentleft
E[\tau, \beta, f] = \sum_k \big[q^{\uparrow} (t) =\exp(-t/\tau)  \cdot \left[ \ q^{\uparrow} (t_k0) -+ \tilde q^{\uparrow}(t_k) \big]^2   \rightarrow \min 

The constraints are:

LaTeX Math Block
anchor4SBJA
alignmentleft
\tau \geq  0 , \quad \beta \geq 0,  \quad  0 \leq f \leq 1

CRMP – Multi-tank Producer-based Capacitance Resistance Model

...

tau^{-1} \cdot  \int_0^t \exp(s/\tau) \left[ f \cdot q^{\downarrow}(s) - \gamma \frac{dp}{ds} \right] ds   \ \right]

and written in equivalent form:

LaTeX Math Block
anchorO2A2VY9PYZ
alignmentleft
q^{\uparrow}_j (t) = \sum_i^{n_i} f_{ij}\exp(-t/\tau)  \cdot \left[ \ q^{\downarrowuparrow}_i (t0) + 
\tau^{-1} \tau_jgamma \cdot  \frac{ d q^{\uparrow}_j}{ dt }  - \beta_j  big( p(0)  - p(t) \cdot  \frac{d p_j}{dt}

This equation can be integrated explicitly:

LaTeX Math Block
anchorqexp
alignmentleft
q^{\uparrow}_j (t) = \expexp(t/\tau) \big)
+\tau^{-1} \cdot  \int_0^t \exp(s/\tau) \left[ f \cdot q^{\downarrow}(s) + \gamma \cdot p(s) \right] ds   \ \right]


The 
objective function is:

LaTeX Math Block
anchorPQYQ2M00IX
alignmentleft
E[\tau, \betagamma, f] = \sum_k \sum_j \big[ q^{\uparrow}_j(t_k) - \tilde q^{\uparrow}_j(t_k) \big]^2   \rightarrow \min 


The basic constraints are:

LaTeX Math Block
anchorW2JXJ4SBJA
alignmentleft
\tau_j \geq  0 ,  \quad \beta_jgamma \geq 0,  \quad  f_{ij} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1

...

0


The additional constraints may be imposed as:

LaTeX Math Block
anchorINEYC
alignmentleft
f \leq 1

which means that a part of injection (

LaTeX Math Inline
body1 - f
) is going away from the reservoir drained by producer.

CRMP – Multi-Injector Capacitance Resistance Model


The model equation is:

LaTeX Math Block
anchorLBWVOO2A2V
alignmentleft
Q^q^{\uparrow}_jn (t) =+  \sum_i^{n_i}tau_n \cdot  \frac{ d q^{\uparrow}_n}{ dt }= \sum_m f_{ijnm} \cdot Q^q^{\downarrow}_im(t)  - \taugamma_jn  \cdot  \big[ q^{\uparrow}_j(t) - frac{d p_n}{dt}


This equation can be integrated explicitly:

LaTeX Math Block
anchorqexp
alignmentleft
q^{\uparrow}_jn (0t) \big]  - \beta_j=\exp(-t/\tau_n) \cdot \bigleft[ p_j(t) - p_j\  q^{\uparrow}_n (0) + \big]

The objective function is:

LaTeX Math Block
anchorFNDCZ
alignmentleft
E[\tau, \beta, f] =  \sum_k \sum_j \big[ Q^{\uparrow}_j(t_ktau_n^{-1}  \cdot \int_0^t \exp(s/\tau_n) \left[ \sum_m  f_{nm} \cdot  q^{\downarrow}_m(s) - \tilde Q^{\uparrow}_j(t_k) \big]^2   \rightarrow \min gamma_n \frac{dp_n}{ds} \right] ds  \right]


The objective function isThe constraints are:

LaTeX Math Block
anchorVBB0SPQYQ2
alignmentleft
E[\tau_jn, \geq  0 ,  \quad \beta_j \geq 0,  \quad f_{ij} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1gamma_n, f_{nm}] = \sum_k \sum_n \big[ q^{\uparrow}_n(t_k) - \tilde q^{\uparrow}_n(t_k) \big]^2   \rightarrow \min 


The constraints are:

LaTeX Math Block
anchorW2JXJ
alignmentleft
\tau_n \geq  0 ,  \quad \gamma_n \geq 0,  \quad f_{nm} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{nm} \leq 1

ICRM  – Integrated Multi-Injector Capacitance Resistance Model


The model equation is:

LaTeX Math Block
anchorLBWVO
alignmentleft
Q^{\uparrow}_n (t) = \sum_n f_{nm} Q^{\downarrow}_n(t)  - \tau_n \cdot \big[ q^{\uparrow}_n(t) - q^{\uparrow}_n(0) \big]  - \gamma_n \cdot \big[ p_n(t) - p_n(0) \big]


The objective function is:

LaTeX Math Block
anchorFNDCZ
alignmentleft
E[\tau_n, \gamma_n, f_{nm}] =  \sum_k \sum_n \big[ Q^{\uparrow}_n(t_k) - \tilde Q^{\uparrow}_n(t_k) \big]^2   \rightarrow \min 


The constraints are:

LaTeX Math Block
anchorVBB0S
alignmentleft
\tau_j \geq  0 ,  \quad \gamma_n \geq 0,  \quad f_{ij} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1


QCRM  – Liquid-Control Multi-Injector  Capacitance Resistance Model


The model equation is:

LaTeX Math Block
anchorQCRM
alignmentleft
p_n(t) = p_n(0) - \tau_n / \gamma_n  \cdot \big[ q^{\uparrow}_n(t) - q^{\uparrow}_n(0) \big]  - \gamma_n^{-1} \cdot Q^{\uparrow}_n (t) + \gamma_n^{-1} \cdot \sum_m f_{nm} \ Q^{\downarrow}_m(t)  


The objective function is:

LaTeX Math Block
anchorHRSYF
alignmentleft
E[\tau_n, \gamma_n, f_{nm}] =  \sum_k \sum_n \big[ p_n(t_k) - \tilde p_n(t_k) \big]^2   \rightarrow \min 


The constraints are:

LaTeX Math Block
anchor4BDL3
alignmentleft
\tau_n \geq  0 ,  \quad \gamma_n \geq 0,  \quad f_{nm} \geq  0 , \quad \sum_i^{N^{\uparrow}} f_{ij} \leq 1,  \quad p_{nr}(0) > 0


where

LaTeX Math Block
anchor7O26X
alignmentleft
p_{nr}(0) = p_n(0) + (\tau_n / \gamma_n)  \cdot q^{\uparrow}_n(0)

is the initial formation pressure.

The equation

LaTeX Math Block Reference
anchorQCRM
 can be re-written with explicit form of initial formation pressure:

LaTeX Math Block
anchorN4TZ7
alignmentleft
p_n(t) = p_{nr}(0) + (\tau_n / \gamma_n)  \cdot  q^{\uparrow}_n(t)  + \gamma_n^{-1} \cdot \sum_m f_{nm}  \ Q_m^{\downarrow}(t)   

where

LaTeX Math Inline
bodyQ_m
 could be both producer
LaTeX Math Inline
body--uriencoded--Q_m%5e%7B\uparrow%7D
or injector
LaTeX Math Inline
body--uriencoded--Q_m%5e%7B\downarrow%7D
.


If 

LaTeX Math Inline
body--uriencoded--p_%7Bnr%7D(0)
 is known then it can be fixed during the search loop which normally improves the quality of future production forecasts.


XCRM  – Liquid-Control Cross-well Capacitance Resistance Model


Some extensions to conventional CRM model can be found in XCRM – Liquid-Control Cross-well Capacitance Resistance Model @model.


ELPM  – Explicit Linear Production Model

Some extensions to conventional CRM model can be found in Explicit Linear Production Model


See Also

...

Petroleum Industry / Upstream /  Production / Subsurface Production / Field Study & Modelling / Production Analysis / Capacitance Resistance Model (CRM)

Production – Injection Pairing @ model

[ Slightly compressible Material Balance Pressure @model ]

Show If
grouparax
Panel
bgColorpapayawhip
titleARAX

CRM as MDCV @model

...

Show If
grouparax
Panel
bgColorpapayawhip
titleARAX

RAFAEL WANDERLEY DE HOLANDA, CAPACITANCE RESISTANCE MODEL IN A CONTROL SYSTEMS FRAMEWORK: A TOOL FOR DESCRIBING AND CONTROLLING WATERFLOODING RESERVOIRS, 2015.pdf


Jong S. Kim, ICRM


Anh Phuong Nguyen, CAPACITANCE RESISTANCE MODELING FOR PRIMARY RECOVERY, WATERFLOOD AND WATER-CO2 FLOOD, 2012.pdf