Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

In multiphase flow the Darcy friction factor can be calculated as Darcy friction factor Single-phase @model with specific approximation of Reynolds number:

LaTeX Math Block
anchorRe
alignmentleft
{\rm Re} = \frac{ \sum_\alpha \rho_L\alpha \, u_L^2\alpha^2 \, A_L + \rho_g\alpha}
{\sum_\alpha \mu_\alpha \, u_g^2\alpha \, \sqrt{A_g}{\mu_L \, u_L \, \sqrt{A_L} + \mu_g \, u_g \, \sqrt{A_g}\alpha} } =
\frac{ \sum_\alpha \rho_\alpha \, q_\alpha^2 / A_\alpha}
{\sum_\alpha \mu_\alpha \, q_\alpha / \sqrt{A_\alpha} } =
\frac{1}{\sqrt{A}} \cdot \frac{ \sum_\alpha \rho_\alpha \, q_\alpha^2 / s_\alpha}
{\sum_\alpha \mu_\alpha \, q_\alpha / \sqrt{s_\alpha} }

where

LaTeX Math Inline
body\rho_

L liquid density

\alpha

LaTeX Math Inline
body\

rho_ggas

alpha
-phase fluid density

LaTeX Math Inline
body

uliquid velocity

s_

L

\alpha

volume share occupied by 

LaTeX Math Inline
body

u_ggas velocity

\alpha
-phase 

LaTeX Math Inline
body

A_L cross-sectional area occupied by liquid 

\mu_\alpha

LaTeX Math Inline
body\alpha
-phase fluid viscosity

LaTeX Math Inline
bodyA_

g

\alpha

cross-sectional area occupied

by gas 

by 

LaTeX Math Inline
body\

mu_L liquid viscosity

alpha
-phase 

LaTeX Math Inline
bodyu_\alpha

LaTeX Math Inline
body\alpha
-phase fluid velocity

LaTeX Math Inline
body

\mu_g gas viscosity

A

total cross-sectional area


Expand
titleDerivation


Panel
borderColorwheat
bgColormintcream
borderWidth7

Reynolds number represent the ration of intertial forces to viscous forces:

LaTeX Math Block
alignmentleft
{\rm Re} = \frac{\rm Intertial \ Forces}{\rm Viscocus \ Forces}




Homogeneous Pipe Flow


Homogeneous Pipe Flow is characterized by the same phase velocities: 

LaTeX Math Inline
bodyu_\alpha = u_t, \, \forall \alpha \in \Gamma
 (no slippage) and the multiphase Reynolds number takes simpler form:

LaTeX Math Block
anchor1
alignmentleft
{\rm Re} =\frac{ \sum_\alpha \rho_\alpha \, u_\alpha \, A_\alpha}
{\sum_\alpha \mu_\alpha \, \sqrt{A_\alpha} } =\frac{ \dot m}
{\sum_\alpha \mu_\alpha \, \sqrt{A_\alpha} } = \frac{\dot m}{\sqrt{A}} \cdot \frac{1}{ \sum_\alpha \mu_\alpha \, \sqrt{s_\alpha} }


2-phase Gas-Liquid  flow


LaTeX Math Block
alignmentleft
{\rm Re} = \frac{\rho_L \, u_L^2 \, A_L + \rho_g \, u_g^2 \, A_g}{\mu_L \, u_L \, \sqrt{A_L} + \mu_g \, u_g \, \sqrt{A_g}}

where

LaTeX Math Inline
body\rho_L

liquid density

LaTeX Math Inline
body\rho_g

gas density

LaTeX Math Inline
bodyu_L

liquid velocity

LaTeX Math Inline
bodyu_g

gas velocity

LaTeX Math Inline
bodyA_L

cross-sectional area occupied by liquid 

LaTeX Math Inline
bodyA_g

cross-sectional area occupied by gas 

LaTeX Math Inline
body\mu_L

liquid viscosity

LaTeX Math Inline
body\mu_g

gas viscosity



See also

...

Physics / Fluid Dynamics / Pipe Flow Dynamics / Darcy–Weisbach equation / Darcy friction factor 

Reference

...

L. E. Ortiz-Vidala, N. Mureithib, and O. M. H. Rodrigueza ,TWO-PHASE FRICTION FACTOR IN GAS-LIQUID PIPE FLOW, Engenharia Térmica (Thermal Engineering), Vol. 13, No. 2, December 2014, p. 81-88

Shannak, B. A., 2008, Frictional Pressure Drop of Gas Liquid Two-Phase Flow in Pipes, Nuclear Engineering and Design, Vol. 238, pp. 3277-3284., doi.org/10.1016/j.nucengdes.2008.08.015

...