Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

LaTeX Math Block
anchorBL
alignmentleft
\frac{\partial s}{\partial t} + q \, \frac{q}{\partialphi }{\partial, x\Sigma} \left(cdot \frac{\partial f}{\phi \, A partial x} \right) = 0
LaTeX Math Block
anchorIC
alignmentleft
s(t=0,x) = 0
LaTeX Math Block
anchorBC
alignmentleft
s(t,0) = 1

...

LaTeX Math Inline
body--uriencoded--\displaystyle s= E_D = \frac%7Bs_w - s_%7Bwi%7D%7D%7B1-s_%7Bwi%7D-s_%7Bor%7D%7D

water → oil displacement efficiency

LaTeX Math Inline
bodyq

sandface injection rate, assumed equal to sandface liquid production rate

LaTeX Math Inline
body\phi(x)

reservoir porosity

LaTeX Math Inline
bodyA\Sigma(x) = h \, L_ D

cross-section area available for flow

LaTeX Math Inline
bodyh(x)

reservoir thickness

LaTeX Math Inline
bodyL_D(x)

rerservoir reservoir width = reservoir length transversal to flow

LaTeX Math Inline
body--uriencoded--\displaystyle f = \frac%7B1%7D%7B1+M_%7Bro%7D/M_%7Brw%7D%7D

in-situ fractional flow function


LaTeX Math Inline
body--uriencoded--M_%7Bro%7D= k_%7Bro%7D(s_o)/\mu_o
relative oil mobility

LaTeX Math Inline
body--uriencoded--M_%7Bwo%7D = k_%7Brw%7D(s_w)/\mu_w

relative water mobility


Approximations

...


In many practical applications (for example, laboratory SCAL tests and reservoir proxy-modeling) one can assume constant porosity and reservoir width: 

LaTeX Math Block
anchorProxyBL
alignmentleft
\frac{\partial s}{\partial t_D} +\frac{\partial f}{\partial x_D} = 0
LaTeX Math Block
anchorProxyIC
alignmentleft
s(t=0,x) = 0
LaTeX Math Block
anchorProxyBC
alignmentleft
s(t,0) = 1

where

LaTeX Math Inline
body--uriencoded--\displaystyle t_D = \frac%7Bq \, t%7D%7BV_\phi %7D

dimensionless time

LaTeX Math Inline
body--uriencoded--\displaystyle x_D = \frac%7Bx%7D%7BL%7D

dimensionless distance between injector and producer

LaTeX Math Inline
bodyL

reservoir length along

LaTeX Math Inline
bodyx
-axis

LaTeX Math Inline
body--uriencoded--V_%7B\phi m%7D= (1-s_%7Bwi%7D-s_%7Borw%7D) \cdot \phi \cdot h \cdot D \cdot L

mobile reservoir pore volume


See Also

...

Petroleum Industry / Upstream / Subsurface E&P Disciplines / Dynamic Flow Model / Reservoir Flow Model (RFM)

...

Show If
grouparax
Panel
bgColorpapayawhip
titleARAX

Reference


Buckley-Leverett.xlsx

Show If
groupeditors
Panel
bgColor#FFDFDD
Expand
titleEditor


The equation 

LaTeX Math Block Reference
anchorProxyBL
 can be explicitly integrated:

LaTeX Math Block
anchorProxyBLSolution
alignmentleft
x_D(s) = \begin{cases}\dot f(s) \cdot t_D, & \mbox{if } s < s^*\\ 2 x^*_D- \dot f(s) \cdot t_D, & \mbox{if } s \geq s^*\end{cases}

where

LaTeX Math Inline
body--uriencoded--s%5e*

critical saturation where fractional flow function reaches inflection point: 

LaTeX Math Inline
body--uriencoded--\ddot f(s%5e*) = 0

LaTeX Math Inline
body--uriencoded--x%5e*_D= f(s%5e*) \cdot t_D%5e*

 "inflection" distance   

LaTeX Math Inline
body--uriencoded--t_D%5e*

"inflection" time

LaTeX Math Inline
body--uriencoded--\displaystyle \dot f(s) = \frac%7Bd f%7D%7Bds%7D, \, \, \ddot f(s) = \frac%7Bd%5e2 f%7D%7Bds%5e2%7D

first and second derivatives of the fractional flow function


Algebraic equation 

LaTeX Math Block Reference
anchorProxyBLSolution
can be used to find a solution of 
LaTeX Math Block Reference
anchorProxyBL
 in terms of saturation over time and distance: 
LaTeX Math Inline
bodys(t,x)
 (see Fig. 1).


Image Added

Fig. 1 – Sample case of  Buckley–Leverett reservoir saturation profile 

LaTeX Math Inline
bodys(t,x)
 capturing the moment,

when water front is still on mid-way towards the producing well, sitting at

LaTeX Math Inline
bodyx_D = 1 \Leftrightarrow x = L
.