Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Motivation



One of the key challenges in Pipe Flow Dynamics is to predict the along-hole temperature distribution during the stationary fluid transport.

Pipeline Flow Temperature Model is addressing this problem with account of the varying pipeline trajectory, pipeline schematic and heat transfer with the matter around pipeline.


In many practical cases the along-hole 
temperature distribution during the stationary fluid flow can be approximated by homogenous fluid flow model.


Outputs


LaTeX Math Inline
bodyT(t, l)

along-pipe temperature distribution and evolution in time


Inputs


LaTeX Math Inline
body--uriencoded--%7B\bf r%7D(l)

pipeline trajectory

LaTeX Math Inline
body--uriencoded--%7B\bf r%7D(l) = \%7B x(l), \, y(l), \, z(l) \%7D

LaTeX Math Inline
body\rho(T, p)

LaTeX Math Inline
bodyA(l)

LaTeX Math Inline
body\mu(T, p)

LaTeX Math Inline
bodyT_0(t)

intake temperature

LaTeX Math Inline
bodyT_{e0}(l)

initial temperature of the medium around the pipeline

LaTeX Math Inline
bodyp_0

intake pressure

LaTeX Math Inline
bodyc_p(l)

specific heat capacity of the medium around pipeline

LaTeX Math Inline
bodyq_0

intake flowrate

LaTeX Math Inline
body\lambda_e(l)

thermal conductivity of the medium around pipeline

LaTeX Math Inline
bodyU(l)

heat transfer coefficient  based on pipeline schematic




Assumptions



Equations



LaTeX Math Block
anchorWIFEB
alignmentleft
\rho \, c \, \frac{\partial T}{\partial t} = \frac{d}{dl} \, \bigg( \lambda \, \frac{dT}{dl} \bigg)  - \rho \, c \, v \, \frac{dT}{dl} + \frac{2 \lambda}{\lambda_e} \cdot \frac{r_f}{r_w^2} \cdot U \cdot \left[ T_e(t, l, r_w) - T \right]



LaTeX Math Block
anchorD11O7
alignmentleft
\rho_e \, c_e \, \frac{\partial T_e}{\partial t} = \nabla ( \lambda_e \nabla T_e)



LaTeX Math Block
anchorUSVI3
alignmentleft
T(t=0, l) = T_{e0}(l)



LaTeX Math Block
anchorRVUHY
alignmentleft
T_e(t=0, l, r) = T_{e0}(l)



LaTeX Math Block
anchorPSFGA
alignmentleft
T(t, l=0) = T_0(t)



LaTeX Math Block
anchor6QNDD
alignmentleft
T_e(t, l, r \rightarrow \infty) = T_{e0}(l)



LaTeX Math Block
anchorU
alignmentleft
2 \pi \, \lambda_e \, r_w \, \frac{\partial T_e}{\partial r} \, \bigg|_{r=r_w} = 2 \pi \, r_f \, U \cdot \left( T_e \, \bigg|_{r=r_w} - T \right)





Approximations



See also

Show If
grouparax


Panel
bgColorpapayawhip
titleARAX

PipeFlow.xls

Температурный профиль однородного потока жидкости в трубе



References



https://en.wikipedia.org/wiki/Darcy_friction_factor_formulae


https://neutrium.net/fluid_flow/pressure-loss-in-pipe/