Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.



Expand
titleContent


Column
width60%


Panel
bgColorAzure

Table of Contents
indent10 px
stylecircle



Column
width40%





Objectives


The main objective of RDL porosity interpretation is to predict air porosity from OH logs.

The interpretation model is calibrated to air porosity on dried out lab cores.



Definition


Excerpt Include
Porosity (effective)
Porosity (effective)
nopaneltrue


Different OH sensors have complex correlation to effective porosity, shaliness and pore-saturating fluids.

The density, neutron, sonic and resistivity tools show a monotonous correlation to porosity and shaliness.

The density, and neutron tools exhibit a linear correlation while sonic  and resistivity tools exhibit non-linear correlation to porosity and shaliness.      




Excerpt Include
Density Porosity
Density Porosity
nopaneltrue




Excerpt Include
Neutron Porosity
Neutron Porosity
nopaneltrue




Sonic Porosity



The sonic porosity is usually abbreviated SPHI and denoted as 

LaTeX Math Inline
body\phi_s
  in equations.

The key measurement is the p-wave velocity sonic log 

LaTeX Math Inline
bodyV_{p \ log}
.

The key model parameter is rock matrix sonic velocity 

LaTeX Math Inline
bodyV_{p \ m}
  which is calibrated for each facies individually and can be can be assessed as vertical axis cut-off on 
LaTeX Math Inline
bodyV_{p \ log}
 cross-plot against the core-data porosity 
LaTeX Math Inline
body\phi_{\rm air}

The model also accounts for saturating rock fluids with p-wave velocity 

LaTeX Math Inline
bodyV_{p \ f}
 value.

In overbalance drilling across permeable rocks the saturating fluid is usually mud filtrate. 

In underbalance drilling this the saturating fluid is identified from resistivity logs.  


WGG Equation (Wyllie)

 

The WGG sonic porosity 

LaTeX Math Inline
body\phi_s
 equation is :

LaTeX Math Block
anchorSAJ3Q
alignmentleft
\frac{1}{V_{p \ log}} = \frac{1-\phi_s \ C_p}{V_{p \ m}} + \frac{\phi_s \ C_p}{V_{p \ f}}

where  

LaTeX Math Inline
bodyC_p
 is compaction factor, accounting for the shaliness specifics and calculated as:

LaTeX Math Block
anchorLL814
alignmentleft
C_p = \frac{V_{shс}}{V_{sh}}

where 

LaTeX Math Inline
bodyV_{sh}
 – p-wave velocity for adjacent shales,

LaTeX Math Inline
bodyV_{shc}
 – p-wave velocity reference value for tight shales (usually 0.003 ft/μs).

 


GGG Equation (Gardner, Gardner, Gregory)


The GGG sonic porosity 

LaTeX Math Inline
body\phi_s
 equation is :

LaTeX Math Block
anchor5Q6OH
alignmentleft
\frac{1}{V^{1/4}_{p \ log}} =  \frac{(1-\phi_s)}{V^{1/4}_{p \ m}} + \frac{\phi_s}{V^{1/4}_{p \ f}}


The above equation is based on the Gardner correlation for sonic density:

LaTeX Math Block
anchorXLJT6
alignmentleft
\rho_s = 171 \cdot V_{p \ m}^{1/4}

where 

LaTeX Math Inline
body\rho_s
 is measured in 
LaTeX Math Inline
body\rm \big[ \frac{m^3}{kg} \big]
 and 
LaTeX Math Inline
bodyV_{p \ m}
 is measured in 
LaTeX Math Inline
body\rm \big[ \frac{m}{\mu s} \big]
 


and mass balance equation:


LaTeX Math Block
anchorXLJT6
alignmentleft
\rho_s = (1-\phi_s)\rho_m + \phi_s \rho_f



RHG Equation (Raymer, Hunt, Gardner)


The RHG sonic porosity 

LaTeX Math Inline
body\phi_s
 equation is :

LaTeX Math Block
anchorVBOUK
alignmentleft
V_{p \ log} = (1-\phi_s)^2 V_{p \ m} + \phi_s V_{p \ f}

and only valid for 

LaTeX Math Inline
body\phi_s < 0.37
.





Cross-Porosity Analysis




Neutron vs Density



LaTeX Math Block
anchor1
alignmentleft
\phi_e = \frac{ \phi_{ed} + \phi_{en}}{2}



for oil/water saturated formations


LaTeX Math Block
anchor1
alignmentleft
\phi_e = \sqrt{\frac{ \phi_{ed}^2 + \phi_{en}^2}{2} \ }



for gas saturated formations




Sonic vs Density


SPHI  is usually not sensitvie to second porosity development while DPHI  accounts for it proportionally.

This means formation units with secondary porosity development will show DPHI growing over SPHI.




Reference



Show If
grouparax

[1]   http://petrowiki.org/Porosity_evaluation_with_acoustic_logging

[2]   http://pangea.stanford.edu/~jack/GP170/Reading%231.pdf 

BWLA - Porosity Logs.pdf

Open_Hole_Wireline_logging.pdf


Wyllie, M.R.J., Gregory, A.R., and Gardner, L.W. 1956. Elastic Wave Velocities in Heterogeneous and Porous Media. Geophysics 21 (1): 41–70. http://dx.doi.org/10.1190/1.1438217


Gardner, G.H.F., Gardner, L.W., and Gregory, A.R., 1974, Formation velocity and density -- the diagnostic basics for stratigraphic traps: Geophysics, 39, 770-780.


Raymer, L.L., Hunt, E.R., and Gardner, J.S., 1980, An improved sonic transit time-to-porosity transform: SPWLA 21 Ann. Logging Symp., July 8-11, 1980, 1-12.