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A common situation encountered by the chemical engineer is heat transfer to fluid flowing 
through a tube.  This can occur in heat exchangers, boilers, condensers, evaporators, and a host 
of other process equipment.  Therefore, it is useful to know how to estimate heat transfer 
coefficients in this situation. 
 
We can classify the flow of a fluid in a straight circular tube into either laminar or turbulent flow.  
It is assumed from here on that we assume fully developed incompressible, Newtonian, steady 
flow conditions.   Fully developed flow implies that the tube is long compared with the entrance 
length in which the velocity distribution at the inlet adjusts itself to the geometry and no longer 
changes with distance along the tube.   
 
Reynolds Number 
 
The value of the Reynolds number permits us to determine whether the flow is laminar or 
turbulent.  We define the Reynolds number as follows. 
 

Reynolds number Re DV DVρ
µ ν

= =  

 
Here, D  is the inside diameter of the tube (or pipe), V is the average velocity of the fluid, ρ  is 
the density of the fluid and µ  is its dynamic viscosity.  It is common to use the kinematic 
viscosity /ν µ ρ=  in defining the Reynolds number.  Another common form involves using the 
mass flow rate m  instead of the average velocity.  The mass flow rate is related to the volumetric 

flow rate Q  via m Qρ= , and we can write 2

4
Q D Vπ
= .  Therefore, the Reynolds number also 

can be defined as 
 

4 4Re Q m
D Dπ ν π µ

= =


 

 
The flow in a commercial circular tube or pipe is usually laminar when the Reynolds number is 
below 2,300.  In the range 2,300 Re 4,000< < , the status of the flow is in transition and for 
Re 4,000> , flow can be regarded as turbulent.   Results for heat transfer in the transition regime 
are difficult to predict, and it is best to avoid this regime in designing heat exchange equipment.  
Turbulent flow is inherently unsteady, being characterized by time-dependent fluctuations in the 
velocity and pressure, but we usually average over these fluctuations and define time-smoothed 
or time-average velocity and pressure; these time-smoothed entities can be steady or time-
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dependent (on a time scale much larger than that of the fluctuations), and here we only focus on 
steady conditions when we discuss either laminar or turbulent flow. 
 
Principal differences between heat transfer in laminar flow and that in turbulent flow 
 
In discussing heat transfer to or from a fluid flowing through a straight circular tube, it is useful 
to distinguish between the axial or main flow direction, and the directions that lie in a plane 
perpendicular to the tube axis.  In that plane, transverse heat flow can be broken into radial and 
azimuthal components. 
 
The principal difference between laminar and turbulent flow, as far as heat transfer is concerned, 
is that an additional mechanism of heat transfer in the radial and azimuthal directions becomes 
available in turbulent flow.  This is commonly termed “eddy transport” and is intense, providing 
much better transfer of energy across the flow at a given axial position than in laminar flow, 
wherein conduction is typically the only mechanism that operates in the transverse directions (an  
exception occurs when there are secondary flows in the transverse direction, such as in coiled 
tubes).  Another difference worth noting is the extent of the “thermal entrance region” in which 
the transverse temperature distribution becomes “fully developed.”  This region is relatively 
short in turbulent flow (precisely because of the intense turbulent transverse transport of energy), 
whereas it tends to be long in laminar flow.  Heat transfer correlations, based on experimental 
results, are typically divided into those applicable in the thermal entrance region, and those that 
apply in the “fully developed” region.  In the case of laminar flow, it is important to be aware of 
this distinction, and normally a laminar flow heat exchanger is designed to be short, to take 
advantage of relatively high heat transfer rates that are achievable in the thermal entrance region.  
In the case of turbulent flow, the thermal entrance region is short, as noted earlier, and typically 
heat transfer occurs mostly in the “fully developed” region.  Therefore, turbulent heat transfer 
correlations are commonly provided for the latter region. 
 
Laminar heat transfer correlations 
 
A variety of correlations are in use for predicting heat transfer rates in laminar flow. From 
dimensional analysis, the correlations are usually written in the form  
 

( )Re,Pr,Nu φ=   

where hDNu
k

=  is the Nusselt number, φ  is some function, and Pr pC
k

µ ν
α

= =  is the Prandtl 

number.  Here, h  is the heat transfer coefficient, k  is the thermal conductivity of the fluid, and 
pC  is the specific heat of the fluid at constant pressure.  As you can see, the Prandtl number can 

be written as the ratio of the kinematic viscosity ν  to the thermal diffusivity of the fluid α .  The 
ellipses in the right side of the above result stand for additional dimensionless groups such as 

/L D , which is the ratio of the tube length to its diameter.   The heat transfer coefficient 
appearing in the Nusselt number is usually the average value over the heat transfer surface.  You 
should assume this to be the case unless otherwise stated explicitly. 
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The Prandtl number plays an important role in heat transfer.  Its physical significance can be 
inferred from its definition.   
 

Ability of a fluid to transport momentum by molecular meansPr
Ability of that fluid to transport energy by molecular means

ν
α

= =  

 
Gases typically have Prandtl numbers in the range 0.7 1− , while the Prandtl number for most 
liquids is much larger than unity.  The Prandtl number for water ranges from 4-7, while that for 
an oil might be of the order of 50-100.  It is not uncommon to encounter Prandtl numbers for 
viscous liquids that are of the order of several thousand or even larger.  One exception to the 
general rule for liquids is a liquid metal.  Liquid metals conduct heat very efficiently, and 
therefore have a relatively large value of the thermal diffusivity α  when compared with ordinary 
liquids.  On the other hand, their viscosities are about the same as that of ordinary liquids.  As a 
consequence, the Prandtl number of a liquid metal is typically of the order of 210− . 
 
Now, we return to the topic of heat transfer in tube flow.  As we noted before, efficient heat 
transfer in laminar flow occurs in the thermal entrance region.  A correlation for the Nusselt 
number for laminar flow heat transfer was provided by Sieder and Tate. 
 

0.141/3
1/3 1/31.86 Re Pr b
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µ
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You can see that as the length of the tube increases, the Nusselt number decreases as 1/3L− .  This 
does not, however, imply that the Nusselt number approaches zero as the length becomes large.  
This is because the Sieder-Tate correlation only applies in the thermal entrance region.  In long 
tubes, wherein most of the heat transfer occurs in the thermally fully-developed region, the 
Nusselt number is nearly a constant independent of any of the above parameters.  When the 
boundary condition at the wall is that of uniform wall temperature, 3.66Nu → .  If instead the 
flux of heat at the wall is uniform, 4.36Nu → , but in this case we already know the heat flux 
and a heat transfer coefficient is not needed.  Remember that the purpose of using a heat transfer 
coefficient is to calculate the heat flux between the wall and the fluid.  In the case of uniform 
wall flux, we can use an energy balance directly to infer the way in which the bulk average 
temperature of the fluid changes with distance along the axial direction. 
 
Note that a ratio ( )/b wµ µ  appears in the above laminar flow heat transfer correlation.  It attempts 
to explicitly account for the fact that the viscosity of the fluid next to the wall is different from 
that in the bulk at any axial location.  If the wall is hot, and we consider a liquid being heated in 
the pipe, the viscosity of the wall fluid will be smaller than that of the fluid in the bulk.  This 
increases the velocity gradient at the wall and therefore the heat transfer rate compared with that 
obtained by assuming that the fluid is at a single temperature across the entire cross-section.  
Likewise, a gas that is being heated by a hot wall will be more viscous at the wall and less 
viscous in the bulk.  The result is a decrease in the velocity gradient at the wall when compared 
with the case of a uniform temperature across the cross-section, and a concomitant decrease in 
the heat transfer rate.  Similar reasoning can be used to infer the direction of change of the heat 
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transfer coefficient when a hot liquid or gas is cooled by a pipe wall.  By explicitly introducing 
the ratio of the viscosity in the bulk to that at the wall in the correlation, Sieder and Tate correct  
the heat transfer coefficient in the right direction in all these cases.   
 
When using the Sieder-Tate equation, all the physical properties must be evaluated at arithmetic 
average of the bulk average temperatures of the fluid at the inlet and the exit in calculating the 
Nusselt, Reynolds, and Prandtl numbers.  Only wµ , which appears in the viscosity ratio, is 
evaluated at the wall temperature. 
 
The Reynolds and Prandtl numbers are raised to the same power in the laminar flow correlation.  
Therefore, we can write the correlation as 
 

( ) ( )
0.14 0.141/3 1/3
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where we have introduced a new group Pe called the Peclet number. 
 

Pe Re Pr DV DVν
ν α α

= = =  

 
The Peclet number Pe  plays a role in heat transfer that is similar to that of the Reynolds number 
in fluid mechanics. Recall that the physical significance of the Reynolds number is that it 
represents the ratio of inertial forces to viscous forces in the flow, or equivalently, the relative 
importance of convective transport of momentum compared with molecular transport of 
momentum.  Thus, the Peclet number tells us the relative importance of convective transport of 
thermal energy when compared with molecular transport of thermal energy (conduction).   
  
The Sieder-Tate correlation is useful only for relatively short tubes. A heat transfer correlation 
for laminar flow that applies regardless of the tube length, given in Mills (1) is 
 

2/3

0.065Re Pr
3.66

1 0.04 Re Pr

D
hD LNu
k D

L

= = +
 +  
 

 

 
Mills recommends that this result for the Nusselt number may be corrected for the variation of 
viscosity with temperature across the cross-section of the tube by multiplication by the factor 
( )0.11/b wµ µ .   Note that as the length becomes very large, 3.66averageNu → , which is the result 
for a uniform wall temperature when the temperature field is fully developed. 
 
The hydrodynamic entrance length ,e momentumL  for the friction factor to decrease to within 5%  of 
its value for fully developed laminar flow conditions can be described approximately using 
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, 0.05 Ree momentumL
D

≈  

 
Likewise, if the velocity profile in laminar flow is fully developed and we then apply a uniform 
wall temperature boundary condition, the thermal entrance length can be estimated from 
 

, 0.033 Re Pre thermalL
D

≈  

 
When both the velocity and temperature fields develop with distance simultaneously, the 
problem is more involved.   
 
Turbulent flow 
 
The entrance lengths are much shorter for turbulent flows, because of the additional transport 
mechanism across the cross section.  Thus, typical hydrodynamic entrance lengths in turbulent 
flow are 10-15 tube diameters, and the thermal entrance lengths are even smaller.  Therefore, for 

most engineering situations wherein 60L
D
≥ , we use correlations for fully developed conditions.  

Correlations for turbulent flow are classified based on whether the interior wall of the tube is 
smooth or whether it is rough.  Here, we discuss only the correlations for smooth-walled tubes.  
For information on heat transfer correlations for turbulent flow in a tube with a rough wall, you 
should consult a reference such as Mills (1). 
 
Dittus-Boelter correlation 
 
The earliest correlation for turbulent heat transfer in a smooth tube appears to have been 
provided by Dittus and Boelter.  A common form to be used for fluids with Prandtl number in 
the approximate range 0.7 100− , and tubes with / 60L D >  is 
 

0.80.023 Re PrnNu =   
 
Here, 0.4n =  if the fluid is being heated, that is, if the wall is at a higher temperature than the 
entering fluid, and 0.3n =  if the fluid is being cooled.   All the physical properties used in the 
Dittus-Boelter correlation must be evaluated at the average bulk temperature of the fluid.  This is 
the arithmetic average of the bulk average temperatures at the entrance and the exit. 
 
The usual recommendation is to use the Dittus-Boelter correlation for Re 10,000> , but in 
practice it is used even at lower Reynolds numbers so long as the flow is turbulent, because it is a 
simple correlation to use.  The textbook by Welty et al. (2) provides two more correlations, one 
from Colburn based on an analogy between momentum and energy transport, and another from 
Sieder and Tate.  We shall now briefly discuss the origin of the analogies. 
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Analogy between momentum and heat transfer 
 
The analogies that are used for inferring results for the Nusselt number in heat transfer 
applications or the Sherwood number in mass transfer applications can be traced back in origin 
to a work by Reynolds who was examining flow and heat transfer in the context of a fluid 
flowing over a solid surface.   Reynolds recognized that the transfer of momentum between a 
solid surface and a fluid flowing past it is analogous to the transfer of energy.  As noted by 
Bennett and Myers (3), Reynolds’s conclusion, when rephrased in current terminology, was that 
the heat transfer coefficient is proportional to the friction factor. A mathematical development 
eventually leads to the result 
  

2 p

f h
C Vρ

=  

All subsequent analogies were extensions of this basic idea. 
 
Colburn’s j-factor analogy 
 
The Reynolds analogy assumes, in effect, that the Prandtl number is unity, implying that the 
molecular transport coefficient of momentum ν  is equal to the molecular transport coefficient of  
energy α . Several authors have developed results by relaxing this assumption.  Colburn (4) 
defined an empirical factor 
 

2/3Pr
2H

p

f hj
C Vρ

= =  

 
If the Prandtl number in the above result is set equal to unity, it reduces to the Reynolds analogy.  
Later in the course, we’ll see that there is an analogous Colburn  j − factor for mass transfer, Mj  
defined in a similar manner using the mass transfer coefficient and the Schmidt number. 
 
Usually, in using the j − factor, one defines a group called the Stanton Number. 
 

NuSt
Re Pr

=  

 
By substituting the standard expressions for the Nusselt, Reynolds, and Prandtl numbers in this 
result, we can obtain a definition for the Stanton number as follows. 
 

( )( )
Nu /St

Re Pr / / p

hD k h
DV C Vν ν α ρ

= = =  

 
Thus, we see that the Colburn analogy reduces to 
 



 7 

2/3St Pr
2H
fj = =  

 
so that 
 

2/3St Pr
2
f −=  

For turbulent flow through smooth tubes, the friction factor can be correlated with the Reynolds 
number approximately by using an empirical result that is relatively simple to use. 
 

0.20.046 Ref −=  
 
When this result is substituted into the Colburn correlation, we obtain 
 

0.2 2/3St 0.023 Re Pr− −=  
 
This can be recast as a correlation for the Nusselt number to see that it is very similar to the 
correlation provided by Dittus and Boelter. 
 

0.8 1/3Nu 0.023 Re Pr=  
 
Welty et al. (2) present the Colburn equation for the Stanton number in Chapter 20 as Equation 
(20-29).  They state certain requirements to be applied when using the Colburn equation.  The 
Reynolds and Prandtl numbers should be evaluated using fluid properties evaluated at the 
average of the bulk and wall temperatures of the fluid.  This means that we first take an 
arithmetic average of the bulk average temperatures of the fluid at the inlet and the exit, and then 
take an average of that value and the wall temperature.  This is called the “film” temperature by 
the authors for historical reasons. The Stanton number, however, is to be evaluated at the 
arithmetic average of the bulk average temperatures of the fluid at the inlet and the exit.  Welty 
et al. also indicate that the correlation is applicable when / 60L D > . 
 
Gnielinski’s correlation 
 
It has been found that the Dittus-Boelter and Colburn equations are not as good as more modern 
correlations for predicting the Nusselt number in turbulent flow heat transfer through tubes. Mills 
(1)  recommends a correlation due to Gnielinski that dates back to 1976 for smooth tubes.   
 

( )( )
( )2/3

/ 2 Re 1000 Pr
1 12.7 Pr 1 / 2

f
Nu

f
−

=
+ −
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Here, f  is the Fanning friction factor for a smooth tube. It is best to calculate it using the 
Zigrang-Sylvester equation or the Colebrook equation after setting the relative roughness equal 
to zero. All the physical properties appearing in the dimensionless groups in the Gnielinski 
correlation should be evaluated at the arithmetic average of the bulk average temperatures of the 
fluid at the inlet and the exit.   The Gnielinski correlation also applies only to fully developed 
heat transfer conditions, so that we can use the same approximate criterion / 60L D >  that is 
recommended for the other correlations by Welty et al. 
 
Sieder-Tate correlation 
 
Welty et al. (1) also mention a correlation from Sieder and Tate for turbulent flow.  You may 
recall the Sieder-Tate correlation for laminar flow, which we presented earlier.  For turbulent 
flow, the Sieder-Tate equation is 

0.14
0.2 2/30.023 Re Pr b

w

St µ
µ

− −  
=  

 
 

You can see that this looks just like the Colburn equation, but has an additional multiplicative 
factor on the right side.  The viscosity ratio ( )0.14/b wµ µ  also appears in the laminar flow heat 
transfer correlation proposed by Sieder and Tate.  It attempts to explicitly account for the 
influence of the variation of viscosity with temperature across the cross-section on heat transfer.   
 
When using the Sieder-Tate equation, all the physical properties must be evaluated at arithmetic 
average of the bulk average temperatures of the fluid at the inlet and the exit in calculating the 
Stanton, Reynolds, and Prandtl numbers.  Only wµ , which appears in the viscosity ratio, is 
evaluated at the wall temperature. 
 
We emphasize again that the correlations given here and in the text are based on friction factor 
results for smooth tubes.  It is possible to develop improved correlations for heat transfer in 
rough-walled tubes.  You can consult the textbook by Mills (1) for some examples. 
 
Non-circular cross-sections 
 
To handle non-circular cross-sections such as annular, triangular, rectangular, and the like, we 
use the concept of equivalent diameter eD .  We have already provided a definition earlier in the 
course for this quantity, namely, 4 /eD A P= , where A  is the cross-sectional area and P  is the 
wetted perimeter.  For a circular tube of diameter D , 2 / 4A Dπ= , and P Dπ= , so that the 
above definition yields eD D= .  For turbulent flow in non-circular cross-sections, we can use 
the correlations for circular tubes.  The equivalent diameter is used in place of the diameter in 
these correlations.   
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