UNI‘VEFLSITY OF OSLO

FACULTY OF MATHEMATICS AND NATURAL SCIENCES

Porosity Logs



General

Type of porosity logs

— Sonic log

— Density log
— Neutron log

* None of these logs measure porosity directly

* The density and neutron logs are nuclear
measurements

* The sonic log use acoustic measurements

« A combination of these logs gives good indications
for lithology and more accurate estimates of porosity
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Sonic log



General

Sonic

* Alog that measures interval transit time (At) of a
compressional sound wave travelling through the
formation along the axis of the borehole

» The acoustic pulse from a transmitter s detected at Tl
two or more receivers. The time of the first detection
of the transmitted pulse at each receiver is processed L] Upper Transmiter

to produce At.
« The At is the transit time of the wave front over one

foot of formation and is the reciprocal of the velocity e "
* Interval transit time is both dependent on lithology T
and porosity <

o F'.‘

« Sonic log is usually displayed in track 2 or 3
« Units: usec/ft, usec/m

« Mnemonics: DT, AC NG Lorerrmmm
« Symbol: ¢ -
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General

Sonic

* Interpretation goals:

Porosity

Lithology identification (with
Density and/or Neutron)

Synthetic seismograms (with
Density)

Formation mechanical
properties (with Density)

Detection of abnormal
formation pressure

Permeability identification (from
waveform)

Cement bond quality

Low Porosity

High Porosity

SEISMIC TRACE [REFLECTION SEISMOGRAM)
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Sonic Porosity

Formula

* From the Sonic log, a sonic
derived porosity log (SPHI) may
be derived:

— Wyllie Time-average
At —At,,.
. :( At, - At j

— Raymer-Hunt-Gardner
At —At
¢5 — § X log matrix
8 At,,
— For unconsolidated formations

At —At ) At xC

_ log matrix 1 — sh
= T Iy ,WithCp=—2—
. [Atf—At J /CIO P= 100

matrix

This requires a formation matrix
transit time to be known

SPHI Units: percent, fraction
Cp = Compaction factor

C = constant, normally 1.0
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Hydrocarbon effects:
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The Dt is increased due to HC
therefore:

e ¢ =¢,x0.7 (gas)
e ¢ =¢,x0.9 (oil)
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Sonic Porosity

Charts

Forosity Evaluation from Soric
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Sonic Porosity

At (psfft) | At , (ns/m)
V.., (ft/sec) V., (M/s) At (psfft) | At . (us/m) | commonly [ commonly
used used
Sandstone 18 -19.5 5.5-5.95 55.5 - 51 182 — 167 55.5 or 51 182 or 167
Limestone 21 -23 6.4—7.0 47.6 — 435 156 — 143 47.5 156
Dolomite 23 7.0 43.5 143 43.5 143
Anhydrite 20 6.1 50 164 50 164
Salt 15 4.575 66.7 219 67 220
Freshwater
. 5.28 1.610 189 620 189 620
mud filtrate
Saltwater mud 5.40 1.649 185 607 185 607
filtrate
Gas 1.08 0.33 920 3018 920 3018
Qil 4.35 1.32 230 755 230 755
Casing (iron) 17.5 5.33 57 187 57 187
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Sonic
Secondary Effects

 Environmental effects:

— Enlarged borehole, formation fractures, gas in the borehole or
formation, or improper centralization can produce signal attenuation
resulting in "cycle skipping” or DT spikes to higher values

— Improper centralization, lack of standoff, or excessive logging speed
can result in "road noise”, or DT spikes to either higher or lower values

» Interpretation effects:

— Lithology: porosity calculated from sonic depends on the choice of
matrix transit time, which varies with lithology

— Porosity calculations for uncompacted formations may yield porosity
values higher than the actual values when using the Wyllie equation.
Use instead the Raymer-Hunt-Gardner equation or correct for
decompaction

— Porosity calculated in gass bearing zones will be slightly higher than
the actual values because the traveltime in gass is higher than in
water
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General
Density

« Gamma rays emitted from a
chemical source (Ce'37, Co®9)
interact with electrons of the
elements in the formation.

« Two detectors count the number of
returning gamma rays which are
related to formation electron density

« For most earth materials, electron
density is related to formation
density through a constant

* Returning gamma rays are
measured at two different energy
levels

— High energy gamma rays (Compton
scattering) determine bulk density and
therefore porosity

— Low energy gamma rays (due to
photoelectric effect) are used to
determine formation lithology

 Low energy gamma rays are
related to the lithology and show
little dependence on porosity and
fluid type

«  Symbol for density: p (rho)

Mudcake
(ch: hmc)

Detector

High energy

Compton scattering

AN~ Low energy

a- | Photoelectric absorption
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General
Density

* Bulk Density: . e Y
— Units: g/cm3, kg/m3 e W e
— Mnemonics: RHOB, DEN, 2 p=s==c %
(ZDEN) | )gj
 Density Porosity: — i
— Units: %, v/v decimal (S ssEses =3
— Mnemonics: DPHI, PHID, = =
DPOR ) ‘, E = ‘3\)
* Density Correction: é : = e
— Units: g/cm3, kg/m3 <7 ,.‘-‘ =TT
— Mnemonics: DRHO j == SEEEE
* Photoelectric effect: )< \ = =
— Units: b/e (barns per electron)t = 5 o
— Mnemonics: PE, Pe, PEF g :,7
= of

TA barn is a unit of area, abbreviated mostly as "bn” or "b”, equal to 10728
m2. Although not an official Sl unit, it is widely used by nuclear physicists,
since it is convenient for expressing the cross sectional area of nuclei and
nuclear reactions. A barn is approximately equal to the area of a uranium
nucleus

4 '-IT{_"
- "-; % UNIVERSITY OF OSLO

FACULTY OF MATHEMATICS AND NATURAL 8§




General
Density

Low Porosity

Interpretation goals

Porosity

Lithology identification (from
PEF and/or with Sonic and/or
Neutron)

Gas indication (with Neutron)

Synthetic seismograms (with
Sonic)

Formation mechanical
properties (with Sonic)

Clay content (shaliness)(with
Neutron)

SEISMIC TRACE ([REFLECTION SEISMOGRAM)

AT SRR AT of
8ach dedecior (geo-/ hydro-phone)

High Porosity

ontversiTy oF osio
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Density Porosity

Formula
«  Formation bulk density (p,) I et T .
is a function of matrix  |r7 " Smm==
density (py,), porosity and & ¥
formation fluid density (py) = e £
« Density porosity is defined . .::" : == =
as: = g ==
_ Pma — Ph | 1} = <
¢den - = = L
Prma ~ P ¢ | o =2
<? I‘\: - == ES===c
« The matrix density and the s k =
fluid density need to be ¢ < =
known 3) : X
=S 5
== ¥,
= &

NIVERSITY OF OSLO
FACULTY OF MATHEMATICS AND NATURAL 8

c




Density Porosity
Chart
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Density Porosity

Mat(rgi;/(ccrlfg)sity Flu(ig/grigiity PEF (ble)
Sandstone 2.65 1.81
Limestone 2.71 5.08
Dolomite 2.87 3.14
Anhydrite 2.98 5.05
Halite 2.04 4.65
Coal ~1.2 0.2
Barite 4.09 267
Gas 0.2 0.95
Oil ~0.85 0.12
Water 1.0-1.2 0.36-1.1
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Density

Secondary Effects

» Environmental effects:
— Enlarged borehole: RHOB < Fm. Bulk Density (DPHI > PHI_, )

— Rough borehole: RHOB < Fm. Bulk Density (DPHI > PHI_, .,). This
is due to the sensor pad losing contact with the borehole wall. Other
indications for a rough borehole will be highly variable Caliper
curve, and a high-valued density correction (DRHO)

— Barite muds: RHOB > Fm. Bulk Density (DPHI < PHI
> I:>E|:actual

* Interpretation effects:

— Lithology: porosity calculated from density depends on the choice of
matrix density, which varies with lithology (DPHI might be negative)

— Fluid content: porosity calculated from density depends on the
choice of fluid density, which varies with fluid type and salinity. In
routine calculations, zone of investigations is assumed to be 100%
filled with mud filtrate

— Hydrocarbons: Presence of gas (light HC) in the pore space causes
DPHI to be more than the actual porosity. In Density-Neutron & : _—
combinations, this causes a "cross-over”, where the NPHI values ——
are less than the DPHI values > 3

— In all three cases above, the RHOB value from the tool is correct,
but the calculated DPHI is erroneous

and PEF

actual)

iSE=sEEEE
e
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Neutron Log



General
Neutron

* Neutron logs measure the hydrogen content in a formation.
In clean, shale free formations, where the porosoty is filled (D
with water or oil, the neutron log measures liquid filled
porosity (6N, PHIN, NPHI)

* Neutrons are emitted from a chemical source (americium — M
beryllium mixture). At collision with nuclei in the formation,
the neutrons loses energy. With enough collisions, the
neutron is absorped and a gamma ray is emitted

« Since a neutron is slightly heavier than a proton, the element which closely
approximates the mass of a neutron is hydrogen. In neutron-hydrogen collisions the
average energy transfers to the hydrogen nucleus is about 2 that of the energy
originally contained in the neutron. Whereas, if the scattering nucleus was oxygen
(mass 16 amu) the neutron would retain 77% of its energy

« Materials with large hydrogen content like water or hydrocarbons become very
important for slowing down neutrons.. Since hydrogen in a porous formation is
concentrated in the fluid-filled pores, energy loss can be related to the formation’s
porosity

& Jhlrl % UNIVERSITY OF OSLO
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General
Neutron

* Neutron curves commoly
displayed in track 2 or 3

» Displayed as Neutron
Porosity (NPHI, PHIN,

NPOR)

« Units: porosity units (p.u.)
(calibrated with a standard,
different for all tools), v/v
decimal, fraction or %

* Neutron logs are not
calibrated in basic physical
units. Therefore, specific
logs need to be interpreted
with specific charts
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General
Neutron

Interpretation goals:

Porosity (displayed directly on
the log)

Lithology identification (with
Sonic and Density)

Gas indication (with Density)

Clay content, shaliness (with
Density)

Correlation, especially in cased
holes

Low Porosity

[ —

i 8 & B B ¥ 8 ¥ & ¥ %

High Porosity
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Neutron Porosity
Secondary Effects

« Environmental effects:

— Enlarged borehole: NPHI > PHI
— Mudcake: NPHI < PHI,a

— Borehole salinity: NPHI < PHI,
— Formation salinity: NPHI > PHI
—  Mud weight: NPHI < PHI
—  Pressure: NPHI > PHI,_

— Temperature: NPHI < PHI_ 4

Pressure and temperature have the greatest
effect. Neutron less affected by rough
borehole

» Interpretation effects:
— Shaliness: NPHI > PHI_,, in shaly zones
— Gas: NPHI < PHI,,, in gassy zones.

— Lithology: In genera, for logs recorded in
limestone porosity units, if the actual
lithology is sandstone, the log porosity is
less than the actual porosity. If the actual
lithology is dolomite, the log porosity is
greater than the actual porosity
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Porosity Combinations



Porosity determination

Givent ., pma OF 04, COrrect total porosities can be
calculated from the appropiate logs, in water-filled
formations and with no secondary porosity* present

* The porosity created through alteration of rock,
commonly by processes such as dolomitization,
dissolution and fracturing

g E}W UNIVERSITY OF OSLO
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But...

Matrix lithology often unknown
Complex mineralogical composition
Presence of other pore fluids than water

Even geometry of pore stuctures affect the tools

So, we need additional information

Fortunately, sonic, density and neutron logs respond different on
—  Matrix minerals
— Pore fluids
— Geometry of pore stucture

Combination of logs may unravel complex matrix and fluid mixtures and thereby
provide a more accurate determination of porosity

A.o. crossplots are a convenient way to demonstrate how various combinations
of logs respond to lithology and porosity

UNIVERSITY OF OSLO
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Introduction
Porosity combinations

* When using a single porosity measurement, lithology must be
specified, through the choice of a matrix value, for the correct porosity
to be calculated

 When using two or more measurements, lithology may be predicted
(along with porosity), but with some ambiguity

 Measurement preferences (in order of choice):

— Two measurements: T — ==
« Neutron and Densi ty Formabn Darsly o3 a0 SHP Sidenat Nection PorosyLog e
— Quick-look Lithology and Porosity Vit
+ Neutron and Sonic il
« Spectral density (bulk density and Pe) I
+ Density and Sonic i St
— Three measurements: }- S
« Neutron and spectral density I
« Neutron; Density, and Sonic G
— MID (Matrix Identifications) Plots il i
— M-N Plots -

1%, UNIVERSITY OF OSLO
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Quick-look (¢ & ¢p)

Lithology ¢y and ¢, Pe 5 &
Sandstone Neutron-Density crossover (d>dp) Of 6 t0 8 <2 -
porosity units ) E=EE====s==
Limestone Neutron and density curves overlay (on-tp) ~5 ’ m ==S ‘
Dolomite Neutron-density separfatlon _(¢N<¢D) of 12 to 14 -3 F i f
porosity units E e —m e —
m — -
Er salt ==
Anhydrite Neu_tron porosity is greater. than.detnsny -5 = .
porosity (¢>dp) by 14 porosity units; ¢ = 0 !
shale
limy dolomit E ESSS==s=s
E= moiam o
Neutron porosity is slightly less than zero. dolocatc sand -
Salt Density porosity is 40 porosity units (0.40) or 47 shale
more. Watch for washed out hole (high '
Caliper) and bad density data
Note: Both ¢y and ¢p should be calculated with respect to limestone.
¢y is recorded on limestone matrix and ¢, is calculated with a p,,, of UNIVERSITY OF OSLO T
2.71 g/cm? or scaled to approx. the Neutron porosity scale e ‘ﬁ‘""”’r—q




Neutron-Density: Special Case

CaseStudy7 [SSTVD]
14468 000 Eo

§§

« Gas detection:
— Density porosity is too high
— Neutron porosity is too low
— Neutron porosity < Density porosity :
— Cross-over —

— Be aware, cross-overs may also be caused by lithological
differences as an affect of the scaling

Porosity of a gas-bearing formation

b J"’ "o 2 xh, 4o,




Neutron-Density crossplot

Crassplots for Pomsity, Likology and Sateration E
Forosity and Lithology Determination from
Formation Density Log and SNP Sidewall Neutron Porosity Log CPab
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Advantage:

Disadvantage:

Given two possible lithology pair
solutions, the porosity remains
relatively invariant between the
solutions

The combination of neutron anc
density is the most common of
porosity tool pairs

In rough holes or in heavy drilli
muds, the density data might be
invalid
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Sonic-Density crossplot

Crassploss for Porcsity, Likology asd Sataration S— s Advantage
Formsen Densty Lag and Soni Log &2 — Potential reservoirs plot along the
closely spaced lithology lines, while
ey 10 shales tend to fall toward the lower
H right of the plot
e 5 — Quite useful for determining some
= 7 evaporite minerals
- . = e « Disadvantage:
RER7” ¢ i — The choice of the lithology pair has
P 44 a significant effect on the estimatio
. . Z’ iPa of the porosity
g A ol . .
= e o A — The lithology lines are closely
£ = 7 spaced, so any uncertainty in the
‘.. mas et measurements produces large
YA changes in lithology and porosity
e LEEHL Ay estimates
2.7 [ Jf@*"ﬁ‘,& I
HEs
oo LT/

1
1; zoric ransitime [peectf)
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Sonic-Neutron crossplot

TS « Advantage:
Porosity and Litholo,g;.r Detarmination from . ) ] ) ]
L e e sl — Given two possible lithology pair
- solutions, the porosity remains
B ] relatively invariant between the
EiEeevmisccincd ditdd ﬁg solutions
~ S — The sonic is less sensitive to roug
] St holes than the density
S « Disadvantage:
K A s ﬁ/ i : 0 0 0
e b AR RS — The combination of sonic and
E S neutron data is not common
E o P g L i
g o i DR \@:ﬁ &Y
90_::_] )_I : i\‘,-'zf -
:::_f\X ;@.,(--b

Dopaizer , EULTION pOROEiY inde (U0, (3pEE et linmestons ponasity)
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Density-Photoelectric crossplot

Crassploss for Pomsity, Litology asd Sataration E L/ Ad Va ntag e :
fom Lino.Danty cag - wr1n — Both measurements are maid with
the same logging tool; both will be
e s e =11 available in newer wells
= « Disadvantage:
BEod — The choice of the lithology pair has
: a significant effect on the estimatio
EEEE B of the porosity
EEEE : — In rough holes or in heavy drilling
EESses % mud the data may be invalid
_ X £ — The Pe will not be present in wells
5 = 5 i logged before 1978
8
i 2.5 jﬁ ‘,1'_
s o i 2 . prm::m“c ‘amr‘t 5 [
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M-N Lithology plots

— « Three-measurement lithology
i
A e e - technique

« Combination of the three
A porosity measurements

fT AREERLCiEE  Single mineralogy

o o i * Binary mixtures
« Ternary mixtures
o7 - "“‘:{" ) BRE
- At — At -
=—"——x0.010or0.003 N-= L

reg
eFreshmud H

pe= 1.0 Mghns, £, =620 pssctn |
pe= 1.0ghen®, £ =153 psecft . .
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Lithology and Porosity

* Result:
— Approximate idea of Lithology
— Value for the Total Porosity

 But...

— We want a value for the Effective Porosity

(I)e =¢t X(l_vsh)




Volume of shale

« The volume of shale in a sand is used in the
evaluation of shaly sand reservoirs.

|t can be calculated by

— Spontaneous Potential
— Gamma Ray




V,, by SP

PSP — SSP
V, =102 V, -

SSP or " SPshale o SSP

«  With
— PSP, Pseudostatic Spontaneous Potential (max. SP of shaly formation)
— SSP, Statis Spontaneous Potential of a nearby thick clean sand
— SPg4e Value of SP in shale, usually assumed to be zero

c
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PSP definition

 pseudostatic spontaneous potential
1. n. [Formation Evaluation]
The ideal spontaneous potential (SP) that would be observed opposite a shaly, permeable
bed if the SP currents were prevented from flowing. In the middle of a thick, permeable bed

whose resistivity is not too high, the SP reads close to the pseudostatic spontaneous
potential (PSP). In other conditions, however, the SP may be significantly less than the
PSP. The PSP ignores other potential sources and assumes that a surrounding shale is a
perfect cationic membrane. The ratio of the PSP to the static spontaneous potential is
known as the SP reduction factor, alpha. Alpha is less than 1 and is a function of the
shaliness, or cation-exchange capacity, within the sand. The higher this cation-exchange
capacity, the larger the internal membrane potential. The latter has the opposite polarity to
the liquid-junction potential and reduces the SP.

The PSP, and alpha, are reduced when hydrocarbons are introduced into shaly sands,

because the cation-exchange capacity in the sands is forced into a smaller conductive pore
volume and therefore has a larger relative effect.

Conclusion: PSP is difficult to determine
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V, by GR

Gamma Ray Index

G R _ G R lcr = Gamma Ray index GR,q = GR reading from the log
. log min

R G R — G R GRin = minimum GR GR,2x = maximum GR
max min

vV, =1

shale GR!

Linear response, 1st order estimate
V, . =0.08(2°"= —1), Larionov (1969), Tertiary rocks

shale

R Steiber (1970)

shale -
3=-2x1_,

V., =17-[338-(1_.-0.7)]*, Clavier 1971)

shale

V. =0.33x(2*= —1), Larionov (1969), for older rocks

shale

-""".t.?-k.
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