Page tree


Motivation


Proxy model of Pressure Profile in Homogeneous Steady-State Pipe Flow @model in the form of algebraic equation for fast computation.


Outputs


p(l)

Pressure distribution along the pipe

Inputs


T_0

Intake temperature 

T(l)

Along-pipe temperature profile 

p_0

Intake pressure 

\rho(T, p)

z(l)

\mu(T, p)


\theta(l)

Pipeline trajectory inclination, \displaystyle \cos \theta (l) = \frac{dz}{dl}

A

Pipe cross-section area  

Assumptions


Steady-State flowQuasi-isothermal flow

\displaystyle \frac{\partial p}{\partial t} = 0

\displaystyle \frac{\partial T}{\partial t} =0 \rightarrow T(t,l) = T(l)

Homogenous flow

Constant cross-section pipe area A along hole

\displaystyle \frac{\partial p}{\partial \tau_x} =\frac{\partial p}{\partial \tau_y} =0 \rightarrow p(t, \tau_x,\tau_y,l) = p(l)

A(l) = A = \rm const

Constant inclinationLinear density

\displaystyle \theta(l) = \theta = {\rm const} \rightarrow \cos \theta = \frac{dz}{dl} = {\rm const}

\rho = \rho^* \cdot ( 1 + c^* \cdot p)


Equation




Pressure profile in static fluid column, no flow:

\dot m = 0, \, q_0 = 0

(1) p(L) = \frac{1}{c^*} \cdot \left[ -1 + (1+c^* \, p_0) \cdot \exp(c^* \rho^* G \, L) \right]
(2) p(L) = p_0 + \frac{1}{c_0} \cdot \left[ -1 + \exp(c_0 \, \rho_0 \, G \, L) \right]

where

G = g \cdot \cos \theta

gravity acceleration along pipe 

See ...



See also


References





  • No labels