Page tree

@wikipedia


A ratio between compressible fluid volumetric flowrate and incompressible fluid volumetric flowrate through the ideal orifice:

(1) \epsilon = \frac{q_{\rm compressible}}{q_{\rm incompressible}}

where

(2) q_{\rm incompressible} = \frac{\pi d^2}{4} \cdot \sqrt{\frac{2 \cdot \Delta p}{\rho \cdot (1-\beta^4)}}

and

\Delta p

pressure drop on the choke\Delta p = p_{in} - p_{out}

\beta = \frac{d}{D}

orifice narrowing ratio

d

orifice diameter

D

pipe diameter 


For incompressible fluids  and slightly compressible fluid (water and most types of oil) the expansion factor is  \epsilon = 1.

For Strongly Compressible Fluid (condensate, steam and gases) the expansion factor is  \epsilon < 1.


The most popular engineering correlation covering various tapping arrangements is given by ISO5167:

(3) \epsilon = 1 - (0.351 + 0.256 \, \beta^4+ 0.93 \, \beta^8) \cdot \left[ 1 - \left( \frac{p_{out}}{p_{in}} \right)^{1/\kappa} \, \right]

where

p_{in}

intake pressure

p_{out}

discharge pressure

\beta = \frac{d}{D}

orifice narrowing ratio

\kappa

Isentropic exponent (κ), in express analysis can be taken as 1.3


See also


Physics / Fluid Dynamics / Pipe Flow Dynamics / Pipe Flow Simulation (PFS) / Pipeline Choke @model

Orifice Plate Discharge Coefficient ]

Pipeline Engineering / Pipeline / Choke

  • No labels